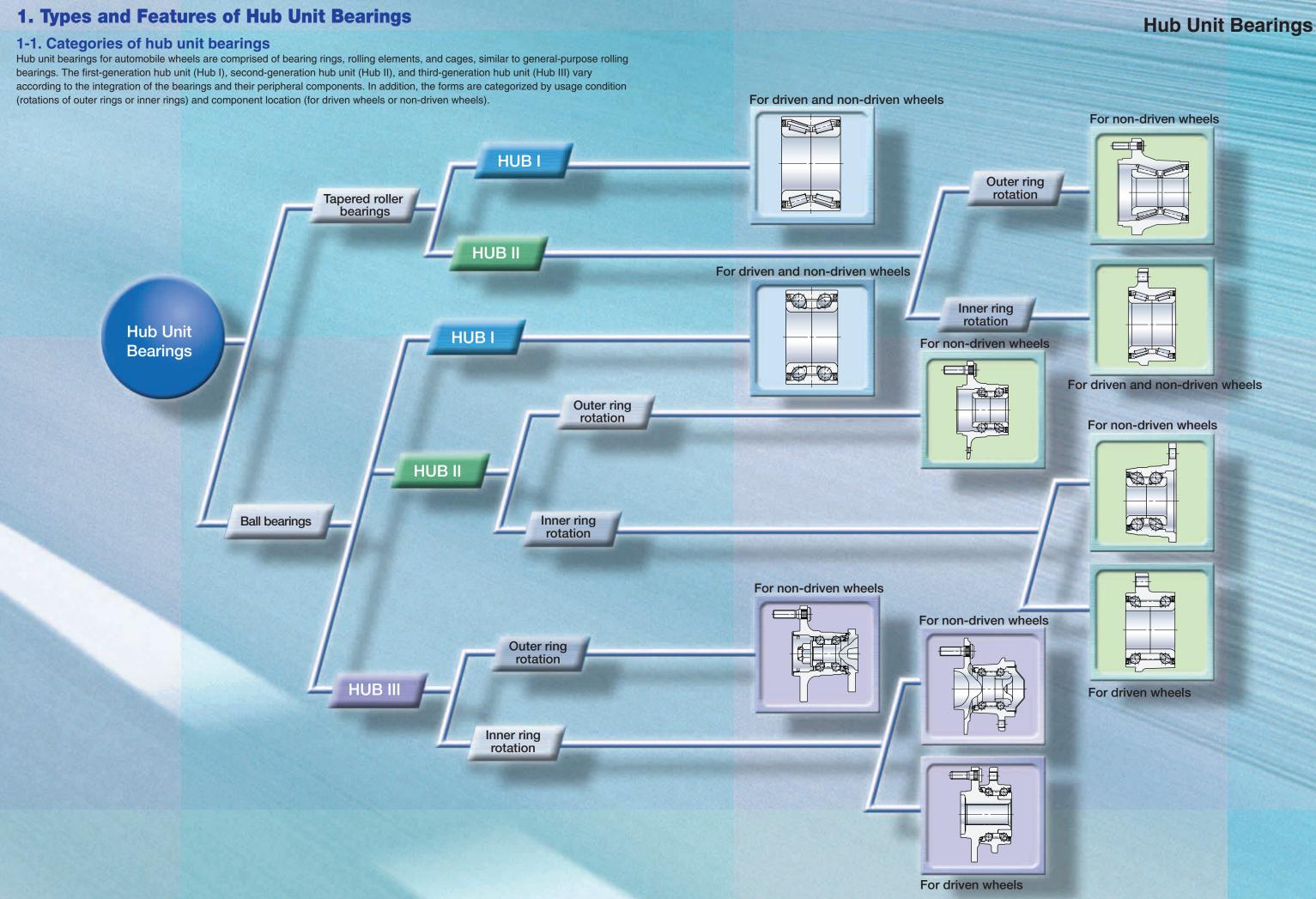



# **Hub Unit Bearings**


Comfort for the 21st Century Intelligently and reliably meeting the needs of a wide range of vehicle models.



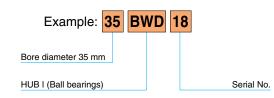


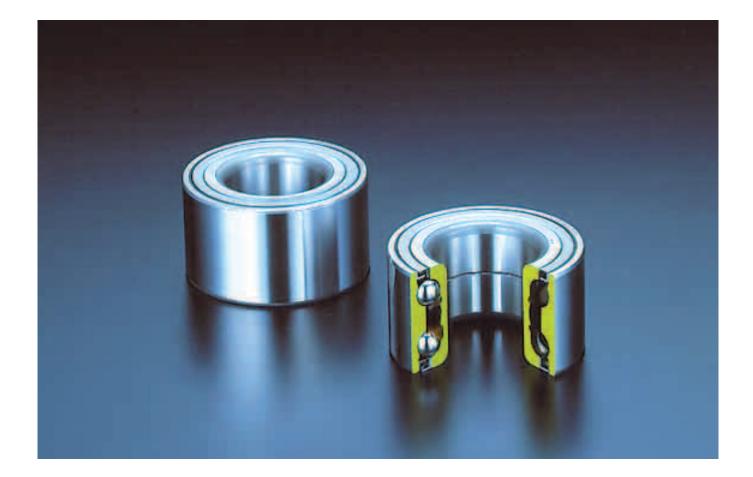
## Hub Unit Bearings

| NTENTS                                                         |    |
|----------------------------------------------------------------|----|
| s and Features of Hub Unit Bearings                            |    |
| Categories of hub unit bearings                                | 3  |
| IUB I                                                          |    |
| IUB II                                                         |    |
| IUB III                                                        |    |
| ction of Hub Unit Bearings                                     | Ŭ  |
| Dverview of selection                                          | 11 |
| Selection of bearing types                                     |    |
| ypes and characteristics of bearings                           |    |
| ction of Dimensions of Hub Unit Bearings                       |    |
| Service life calculation                                       | 16 |
| Rigidity                                                       |    |
| Strength                                                       |    |
| nd Preload of Hub Unit Bearings                                |    |
| it and preload                                                 | 21 |
| Recommended fitting measurements                               |    |
| itting tests                                                   |    |
| Unit Bearing Seals                                             |    |
| Unit Bearing Grease                                            |    |
| erial for Hub Unit Bearings                                    |    |
| Aterial for raceway rings and rolling elements                 | 25 |
| Cage material                                                  | 26 |
| Unit Bearings with Integral ABS Sensors                        |    |
| Aulti-pole magnetic encoders for ABS                           | 26 |
| lub unit bearings with integral ABS sensors                    | 27 |
| Unit Bearings with Swaging                                     | 28 |
| ommended Bearing Nomenclatures                                 | 29 |
| Unit Bearing Dimension Table                                   |    |
| BWD type                                                       | 31 |
| KWD type                                                       | 33 |
| BWK outer ring rotation type                                   |    |
| (for non-driven wheels)<br>BWK inner ring rotation type        | 35 |
| (for non-driven wheels)                                        | 36 |
| BWK inner ring rotation type                                   |    |
| (for driven wheels)                                            | 37 |
| KWH inner ring rotation type<br>(for driven/non-driven wheels) | 37 |
| BWKH inner ring rotation type                                  |    |
| (for non-driven wheels)                                        | 39 |
| (for driven wheels)                                            | 40 |

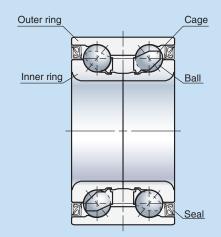


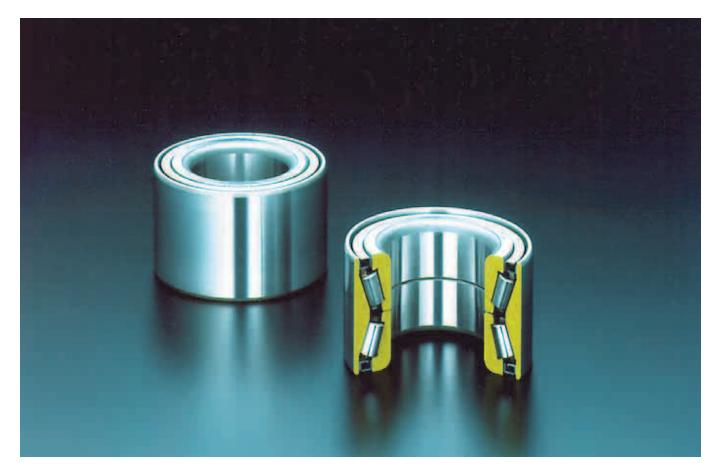
## **HUB**


### 1-2. HUB I

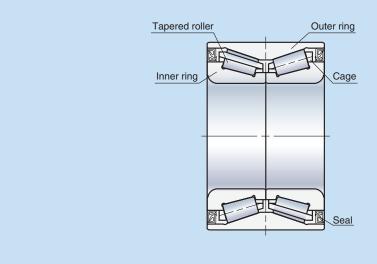

For HUB I, NSK uses proprietary bearing-type designations such as "BWD" for ball bearings and "KWD" for tapered roller bearings. The HUB I units are double-row angular contact ball bearings (BWD) and double-row tapered roller bearings (KWD) with back-to-back duplex outer rings.

No preload adjustments (including dimensional adjustments by shims) are required on the assembly line. The initial axial clearance is properly pre-set for the preload to fall within the

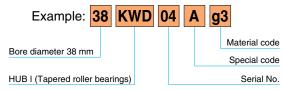

specified range after mounting. In addition, the integral seal eliminates the need for automotive makers to externally apply seals.


NSK uses bearing reference for hub unit bearings clarifying boundary dimensions, types, and specification codes. Below are examples of bearing reference:






BWD (Ball bearings) for driven and non-driven wheels






KWD (Tapered roller bearings) for driven and non-driven wheels



### **Hub Unit Bearings**

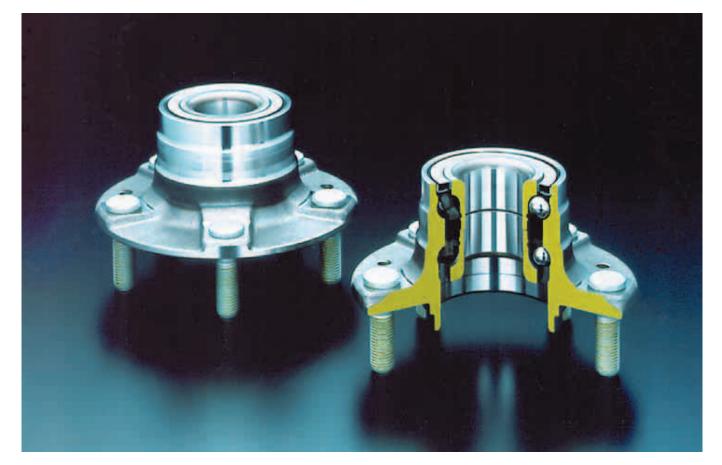


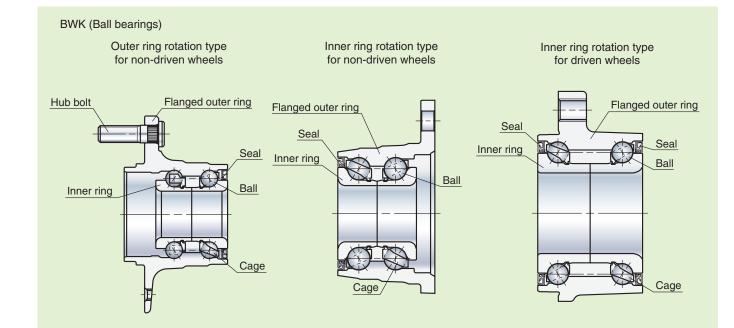
# **HUB II**

### 1-3. HUB II

For HUB II, NSK uses proprietary bearing-type designations such as "BWK" for ball bearings and "KWH" for tapered roller bearings. HUB II configurations are BWD or KWD HUB I with flanged outer rings.

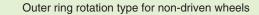
• Outer ring rotation type (for non-driven wheels): Wheels and brake disks are mounted at the flanges. Spindles are inserted into the inner rings and fixed with nuts.

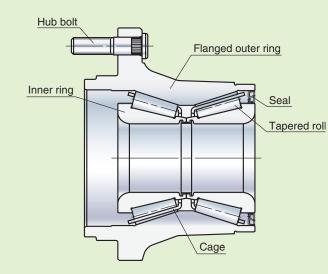

• Inner ring rotation type (for non-driven wheels): The flanges are fixed to the car body. Hub spindles are pressed into the inner rings and fixed with nuts.


• Inner ring rotation type (for driven wheels): The flanges are fixed to the axle housing. Wheel hubs and drive shafts are engaged to the inner rings.

With all of the HUB II types, the initial axial clearance is properly pre-set for the preload to fall within the specified range after mounting, similar to the HUB I.

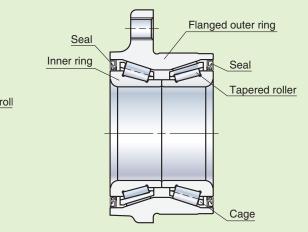
NSK uses bearing reference for hub unit bearings clarifying boundary dimensions, types, and specification codes. Below are examples of bearing reference:









KWH (Tapered roller bearings)





### Hub Unit Bearings

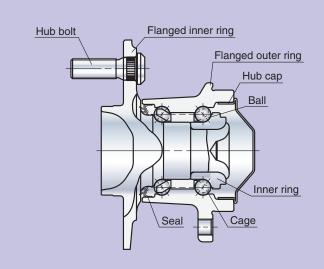
Inner ring rotation type for non-driven and driven wheels



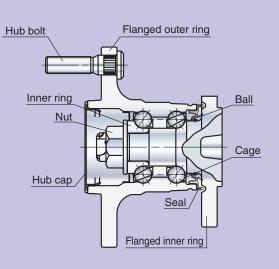
# HUB III

### 1-4. HUB III

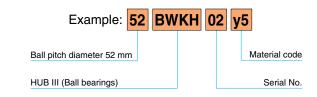
For HUB III, NSK uses proprietary bearing-type designations such as "BWKH" for ball bearings. The HUB III configuration is a BWD HUB I with flanged inner and outer rings. • Outer ring rotation type (for non-driven wheels): Wheels and brake disks are mounted at the outer ring flanges. The inner ring flanges are mounted on the car body, and the preload is pre-adjusted.


• Inner ring rotation type (for non-driven wheels): Wheels and brake disks are mounted at the inner ring flanges. The outer ring flanges are mounted on the car body,

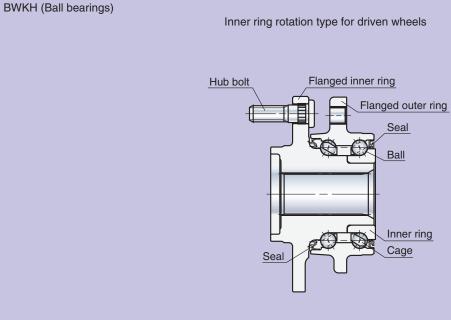
#### and the preload is pre-adjusted.


Inner ring rotation type (for driven wheels): Wheels and brake disks are mounted at the inner ring flanges. A splined bore allows bearings to be engaged to the CVJ shaft end. The outer ring flanges are fixed at the axle housing. The initial axial clearance is properly pre-set for the preload to fall within the specified range after the nuts are fastened.

BWK (Ball bearings)


Inner ring rotation type for non-driven wheels




Outer ring rotation type for non-driven wheels




NSK uses bearing reference for hub unit bearings clarifying boundary dimensions, types, and specification codes. Below are examples of bearing reference:







### **Hub Unit Bearings**



### **2. Selection of Hub Unit Bearings**

#### 2-1. Overview of selection

While higher performance is demanded for hub unit bearings, the constraints and conditions of their application are becoming increasingly diverse. The selection of optimum bearing types satisfying such constraints and conditions requires the examination of various aspects. Please contact NSK for comprehensive technical services, such as functional evaluation, or technical consultations on design specifications in the development process, costs, and scheduling, for suitable selection of hub unit bearings. Fig. 1 shows the sample selection process of hub unit bearing types, and Fig. 2 shows sample specifications of hub unit bearings for automobiles.

Studies on bearing types

among HUB I, HUB II, and

HUB III

Space allowable for bearings

Rotating rings (inner/outer rings)

(turning load and inclination angle)

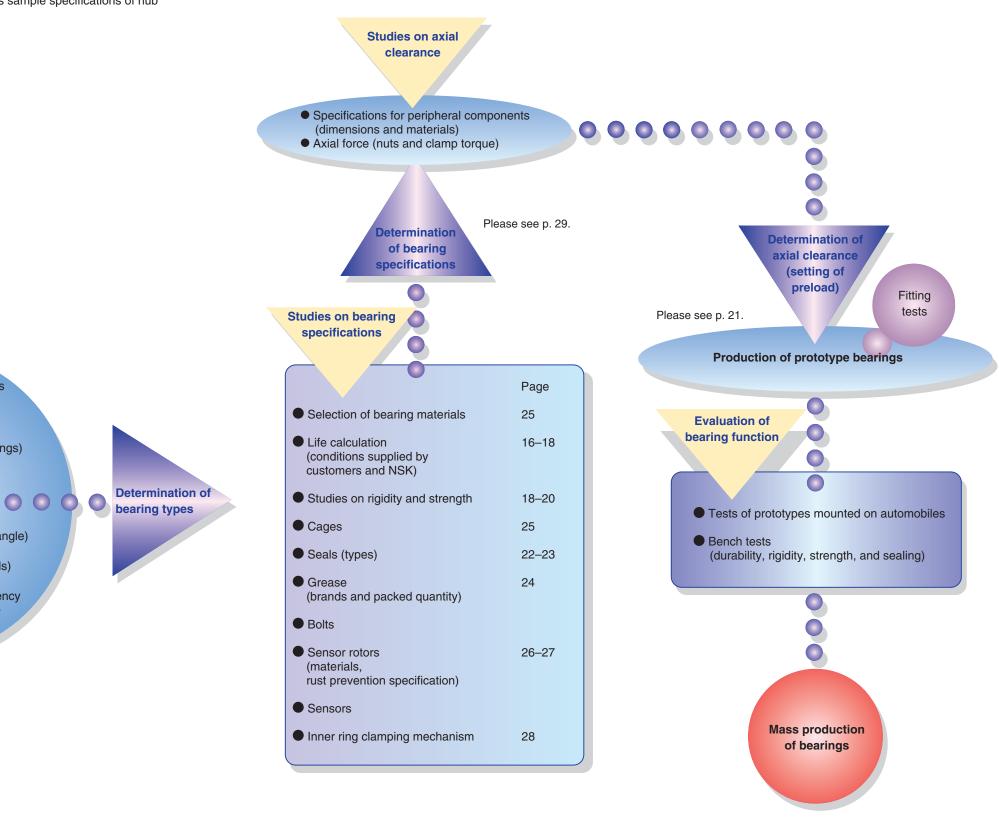
Seal (with seals/without seals)

Marketability and cost-efficiency

(distribution of processes for

Please see p. 13-15.

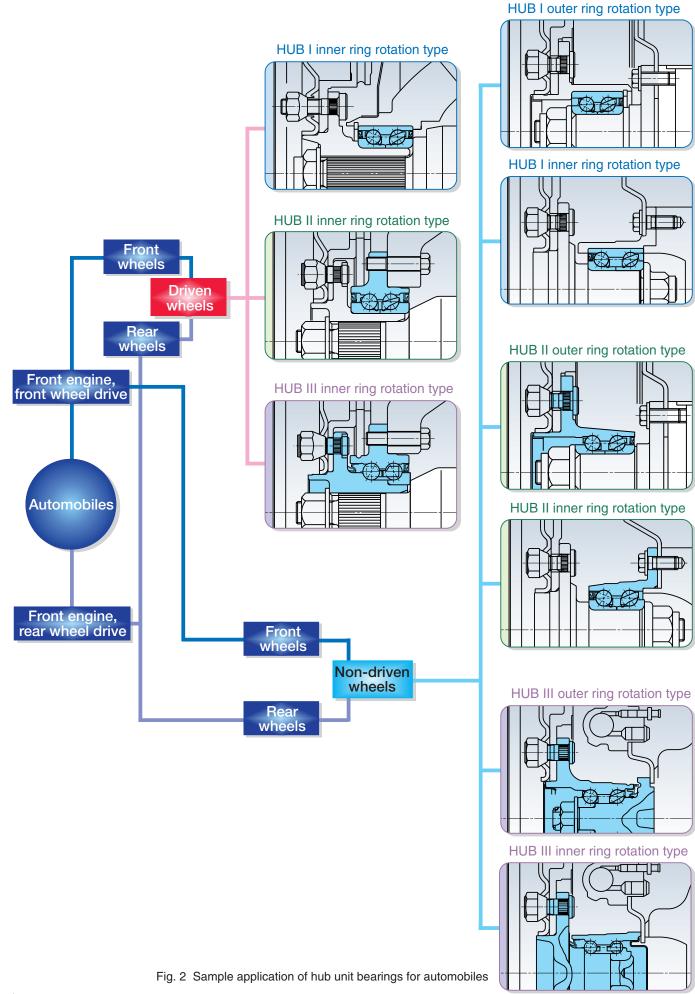
peripheral components)


(constraints of peripheral

components)

Rigidity

Running conditions


(turning acceleration)



- Requirements for bearings (vehicle types, new development/design modification)
- Usage conditions
   (front/rear wheels, driven/non-driven wheels, vehicle specifications)
- Dimension specifications for mounting bearings
- Special user preferences (brands and packed quantity of grease, inner-ring separable load, seals, hub bolts, sensor rotors, sensors, and innerring clamping mechanism)
- Evaluation tests/criteria for determination

Fig. 1 Sample selection process of hub unit bearing types

### **Selection of Hub Unit Bearings (cont.)**



#### 2-2. Selection of bearing types

Table 1 describes the comparable features of the different bearing types to help customers select the suitable bearing. Carefully consider all aspects, including each type's features, peripheral components, mounting time, and facilities.

Application with 2 sets of single-row bearings

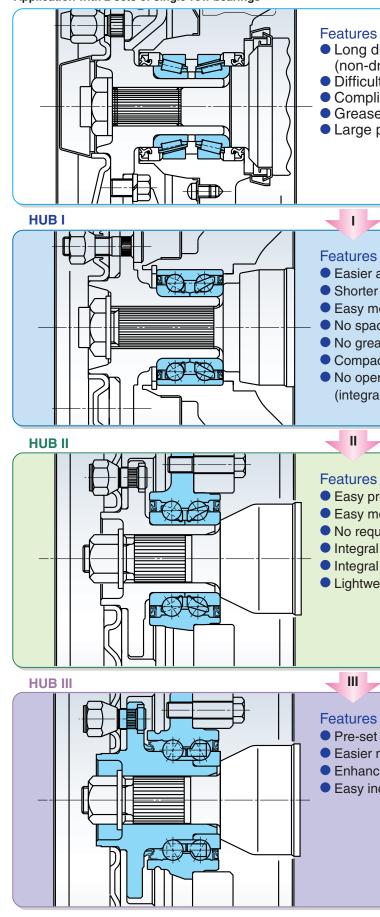



Table 1 Features of hub unit bearing types

#### **Features**

- Long distances between effective load centers
- (non-driven wheels)
- Difficult preload setting
- Complicated mounting process
- Grease packing required
- Large packaging required

## 

#### Features compared to 2 sets of single-row bearings • Easier and more reliable preload setting

- Shorter distance between effective load centers
- Easy mounting process
- No spacer adjustment required
- No grease packing required
- Compact
- No operations required to press seals into hub units
- (integral seals are optional)

#### Features compared to HUB I

- Easy preload setting
- Easy mounting process
- No requirements to fit to knuckles
- Integral seals (improved reliability)
- Integral sensor rotors are optional (outer ring rotation)
- Lightweight and compact

#### Features compared to HUB II

- Pre-set preload (non-driven wheels)
- Easier mounting
- Enhanced rigidity
- Easy incorporation of ABS sensors

### 2-3. Types and characteristics of bearings

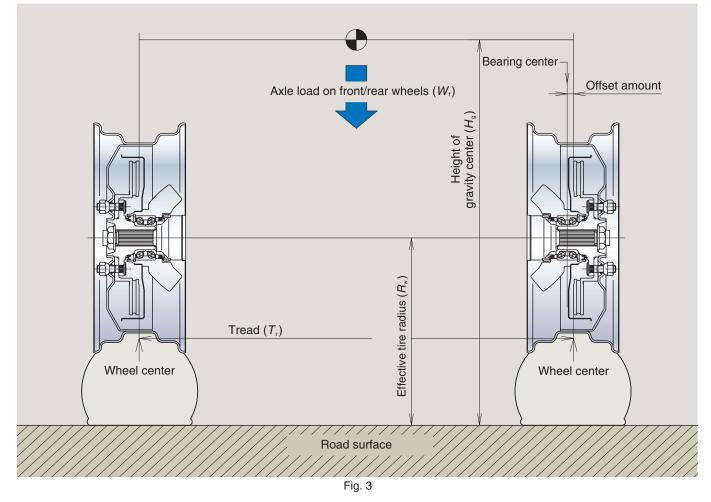
Table 2 shows the characteristics according to the requirements of hub unit bearing types.

|                 |                             | HU                                                        | JB I                                                      |                               | HU                            | B II                          |                               | HUB III |
|-----------------|-----------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------|
| Characteristics | Items                       | BWD                                                       | KWD                                                       | BWK<br>outer ring<br>rotation | BWK<br>inner ring<br>rotation | KWH<br>outer ring<br>rotation | KWH<br>inner ring<br>rotation | BWKH    |
|                 | Load capacity               | 0                                                         | 0                                                         | 0                             | 0                             | 0                             | 0                             | 0       |
| Functionality   | Rigidity                    |                                                           | 0                                                         |                               | $\bigtriangleup$              | 0                             | 0                             | 0       |
| Tunctionality   | Rotation torque             | 0                                                         |                                                           | 0                             | 0                             |                               |                               | 0       |
|                 | Seizure resistance          | 0                                                         | Δ                                                         | 0                             | 0                             |                               |                               | 0       |
| Compactness     | Axle weight                 |                                                           | Δ                                                         | 0                             | 0                             | 0                             | 0                             | 0       |
|                 | Cross-section space         |                                                           | Δ                                                         | Δ                             |                               | 0                             | 0                             | 0       |
|                 | Width space                 | 0                                                         | Δ                                                         | 0                             | 0                             | 0                             | 0                             | 0       |
|                 | Seals                       | <ul> <li>△ Without seals</li> <li>○ With seals</li> </ul> | <ul> <li>△ Without seals</li> <li>○ With seals</li> </ul> | 0                             | 0                             | 0                             | 0                             | 0       |
| Reliability     | Preload range under motion  |                                                           | Δ                                                         | 0                             | 0                             | 0                             | 0                             | 0       |
|                 | Reliability in service      |                                                           | Δ                                                         | 0                             | 0                             | 0                             | 0                             | 0       |
| Maintenance     | Preload management          |                                                           |                                                           | 0                             | 0                             | 0                             | 0                             | 0       |
|                 | Mounting and serviceability |                                                           |                                                           | 0                             | 0                             | 0                             | 0                             | 0       |

Table 2 Types and characteristics of hub unit bearings

 $\bigcirc$  Excellent  $\bigcirc$  Good  $\triangle$  Fair

## 3. Selection of Dimensions of Hub Unit Bearings Hub Unit Bearings


Selection of the dimensions of hub unit bearings requires consideration of their service life, rigidity, and strength.

### **3-1. Life calculation**

This section shows the method used to calculate the bearing life. NSK performs life calculation using proprietary computer software, so please supply your application condition information to an NSK representative.

#### (1) Required information

The service life of hub unit bearings is calculated based on the following information:



#### (2) Calculation of road reaction

The road reaction on wheels is calculated as follows:

$$R = \frac{f_{w} \cdot W_{f}}{2} \quad (1 + \frac{2 \cdot H_{g} \cdot \zeta}{T_{r}})$$
$$T = \frac{\zeta \cdot W_{f}}{2} \quad (1 + \frac{2 \cdot H_{g} \cdot \zeta}{T_{r}})$$

R: Vertical road reaction (N)

T: Horizontal road reaction (N)

 $f_{\rm w}$ : Vertical load coefficient (coefficient of vertical road reaction)

ζ: Turning acceleration (G)

(Positive (+) in case of outside turning wheels. Negative (-) in case of inside turning wheels.)

#### (3) Calculation of bearing load

The bearing load is calculated when automobiles take on vertical road reaction R and horizontal road reaction T from the road surface.

| • Axle load on front wheels or rear wheels $\dots W_{f}(N)$ |
|-------------------------------------------------------------|
| • Front or rear wheel tread                                 |
| • Height of gravity center                                  |
| • Effective tire radius                                     |
| • Offset amount                                             |
| (External car body is positive (+) from bearing center.)    |

#### (a) Radial load

The radial load is calculated as follows:

$$F_{ri} = \frac{m}{\ell} R + \frac{R_{w}}{\ell} T$$

$$F_{ro} = \frac{n}{\ell} R - \frac{R_{w}}{\ell} T$$

 $F_{ri}$ : Radial load on inboard row of bearings (N)

 $F_{ro}$ : Radial load on outboard row of bearings (N)

ℓ: Distance between effective load center (mm)

*m*: Distance from the effective space rating on outboard row to the wheel center (mm)

$$m = \frac{\ell}{2} - S$$

*n*: Distance from the point of load application of inboard row to the wheel center (mm)

$$n = \frac{\ell}{2} + S$$

### Selection of Dimensions of Hub Unit Bearings (cont.)

#### (b) Axial load and load factor

Axial load and load factor must satisfy the formulas below. As these formulas are extremely complicated, computers are used. This also allows ease of iterative calculations by modifying the axial clearance and preload.

Balance of axial load

- $F_{ai} = F_{ao} + T$
- $F_{ai}$ : Axial load imposed on inboard row of bearings (N)  $F_{ao}$ : Axial load imposed on outboard row of bearings (N)
- .

Balance of axial displacement

- $\delta_{\rm ai}$  +  $\delta_{\rm ao}$  =  $\delta_{\rm O}$
- $\delta_{ai}$ : Axial displacement on inboard row of bearings (mm)
- $\delta_{ao}$ : Axial displacement on outboard row of bearings (mm)
- $\delta_{0}$ : Axial clearance (mm)
- (+ for clearance, for preload)

Relation between radial load and axial load

$$F_{ai(O)} = F_{ri(O)} \cdot \tan \alpha \cdot \frac{J_a}{J_r}$$

- $\alpha$ : Contact angle of bearings
- J<sub>a</sub>: Axial integral

 $J_{a} = \frac{1}{\pi} \int_{0}^{\Psi_{0}} \{1 - \frac{1}{2\varepsilon} (1 - \cos \psi)\} d\psi$ 

J<sub>r</sub>: Radial integral

$$J_{\rm r} = \frac{1}{\pi} \int_{0}^{\psi_0} \{1 - \frac{1}{2\varepsilon} (1 - \cos\psi)\} \cos\psi d\psi$$

€: Load factor

 $\psi_0$ : Angle indicating load range

Where  $\varepsilon \le 1 \cos \psi_0 = 1 - 2 \varepsilon$ 

Where  $\varepsilon \leq 1 \psi_0 = \pi$ 

*t*: Constant (3/2 for ball bearings, and 1/0.9 for roller bearings)

#### (c) Calculation of bearing life

The following formula produces the relation between the bearing life and load factor:

$$L = \left(\frac{J_1(0.5)}{J_r(0.5)} \cdot \frac{J_r}{J_1}\right)^p \cdot L$$

- *L*: Calculated bearing life when load factor of *E* (per 10<sup>6</sup> rotations)
- *L*<sub>0</sub>: Calculated bearing life when load factor of  $\mathcal{E}$  equals 0.5 (per 10<sup>6</sup> rotations)

$$L = \left( \frac{C_{\rm r}}{F_{\rm r}} \right)$$

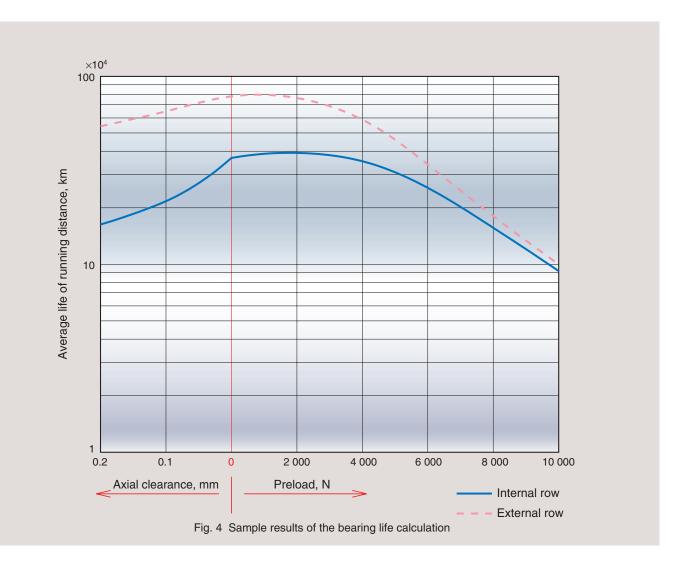
- Cr: Basic dynamic load rating (N)
- F<sub>r</sub>: Bearing radial load (N)
- P: Constant (3 for ball bearings, 10/3 for roller bearings)
- J<sub>1</sub>: Radial integral against average rolling element load

$$J_{1} = \left(\frac{1}{\pi} \int_{0}^{\psi_{0}} \{1 - \frac{1}{2\varepsilon} (1 - \cos \psi)\} d\psi \right)^{1/8}$$

- *r*: Constant (4.5 for both of ball bearings and roller bearings)
- s: Constant (3 for ball bearings and 4 for roller bearings)

#### (d) Average life of running distance

Based on certain running conditions, calculations are made with the service life to obtain the average life of running distance.


$$L_{\rm m} = \frac{1}{\sum \frac{S_{\rm r}(i)}{L(i)}}$$

- *L*<sub>m</sub>: Average life (per 10<sup>6</sup> rotations)
- $S_r$  (i): Ratio under running conditions
- *L* (i): Calculated life under running conditions (per 10<sup>6</sup> rotations)

Average life Lm multiplied with running distance per rotation equals average life of running distance  $L_{sm}$ .

 $L_{sm} = 2\pi \cdot R_w \cdot L_m$  (km) Fig. 4 shows a graph of the calculation results.

Please contact NSK for life calculation of hub unit bearings.



#### 3-2. Rigidity

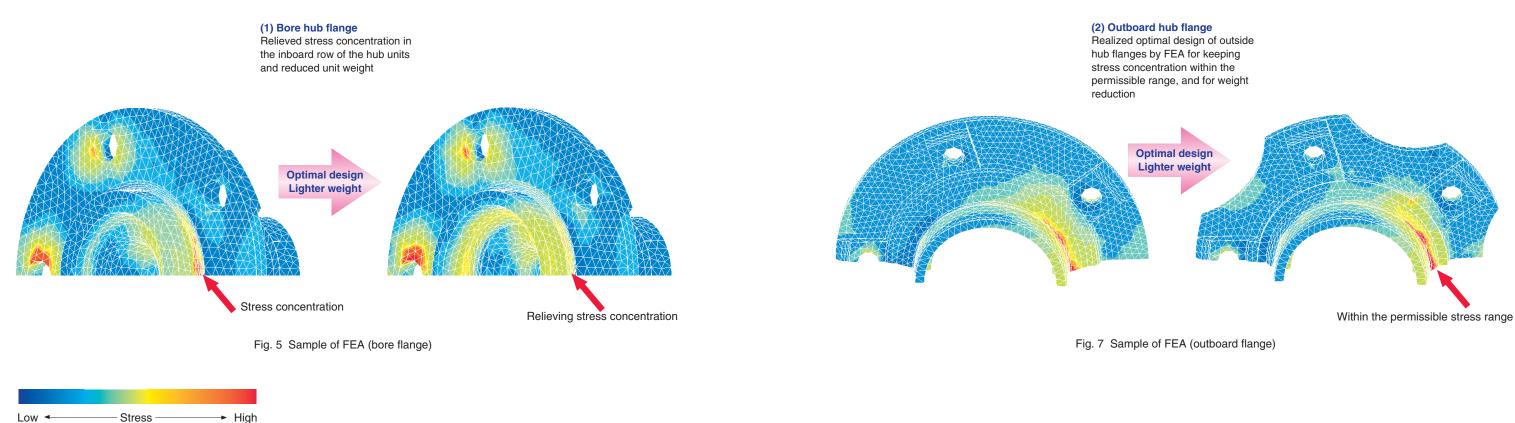
The following elements must be taken into account regarding the rigidity of hub unit bearings:
(1) Deformation of rolling elements and raceway
(2) Deformation of outer and inner rings
(1) for HUB I, and (1), (2) for HUB II and III.

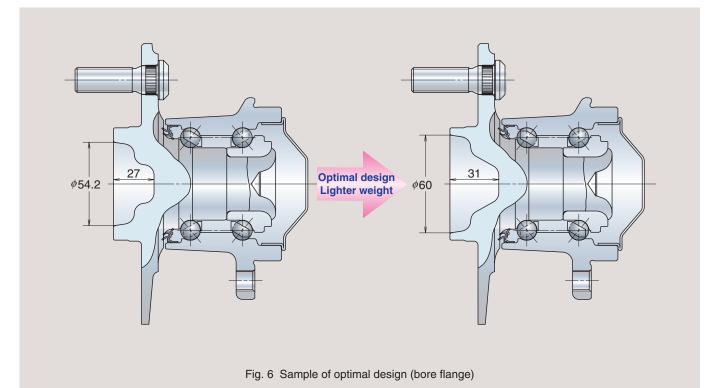
#### (1) Deformation of rolling elements and raceway

Rigidity of bearings (relative inclination angle  $\theta$ ) are calculated based on axial displacement  $\delta_{\rm al(o)}$  derived from the life calculation, and radial displacement  $\delta_{\rm rl(o)}$  derived from the load factor.

$$1 + \frac{\delta_{ai(0)}}{\delta_{ri(0)}} = 2 \cdot \varepsilon$$
$$\theta = \tan^{-1} \frac{\delta_{ri} - \delta_{ro}}{\rho}$$

- $\delta_{\mbox{\tiny rl}}$  : Radial displacement on inboard row (mm)
- δ<sub>ro</sub>: Radial displacement on outboard row (mm)
   θ: Relative inclination angle between inboard and outboard rows


#### (2) Deformation of outer and inner rings


For HUB II and III, the Finite Element Analysis (FEA) is used to calculate deformation considering the flange rigidity of outer and inner rings.

Please contact NSK for rigidity calculations with FEA.

### 3-3. Strength

FEA is used for the analysis of flange strength and rigidity in hub unit bearings for optimal design. NSK applies this technology to reduce the weight of hub units when proposing highly rigid and lightweight shapes to automobile manufacturers.





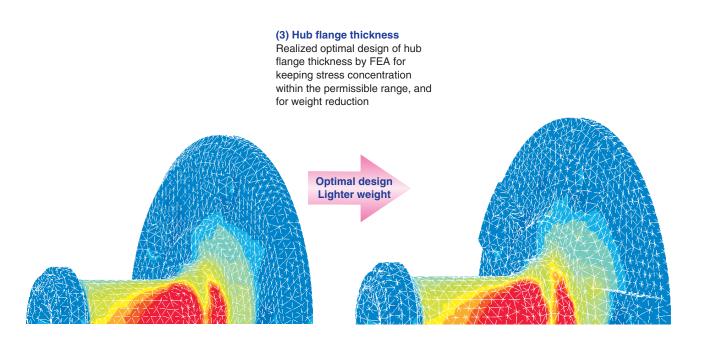



Fig. 8 Sample of FEA (flange thickness)

### 4. Fit and Preload of Hub Unit Bearings

Axial clearance and fit are specified to allow hub unit bearings to operate within an optimal preload range (life, rigidity, creep, and heat generation).

#### 4-1. Fit and preload

The preload must be pre-adjusted based on the fit with other components and nut clamping force, which reduces axial clearance.

For calculating tolerances, NSK has standard preload settings of zero to negative clearances using the  $3\sigma$  method and maximum preload of 9 800N using the direct sum method.

#### 4-2. Recommended fitting measurements

Table 3 indicates the fitting measurements recommended for each type.

Table 4 lists the actual components required for fitting tests.

|         | Table 3 Reco            | ommended fitting measurements | Table 3 Recommended fitting measurements unit: mm |  |  |  |  |  |  |  |  |  |  |  |
|---------|-------------------------|-------------------------------|---------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Ту      | rpe                     | Housing                       | Shaft                                             |  |  |  |  |  |  |  |  |  |  |  |
| HUB I   | Inner ring<br>rotations | -0.064<br>T7 -0.094           | +0.025<br>m6<br>+0.009                            |  |  |  |  |  |  |  |  |  |  |  |
| HUBT    | Outer ring<br>rotations | -0.061<br>-0.088              | -0.018<br>-0.034                                  |  |  |  |  |  |  |  |  |  |  |  |
| HUB II  | Inner ring<br>rotations | _                             | +0.025<br>m6<br>+0.009                            |  |  |  |  |  |  |  |  |  |  |  |
|         | Outer ring<br>rotations | _                             | Loose                                             |  |  |  |  |  |  |  |  |  |  |  |
| HUB III | Inner ring<br>rotations | _                             | _                                                 |  |  |  |  |  |  |  |  |  |  |  |
|         | Outer ring<br>rotations | _                             | _                                                 |  |  |  |  |  |  |  |  |  |  |  |

Notes: 1) The dimensional tolerance of the diameter between inner rings and outer rings of hub unit bearings is in compliance with JIS0.

2) Excessive fastening by fitting bearing inner rings may cause defects (high pressure, deformation of pressed surface, plastic deformation, cracking of inner rings). Check to see that the maximum stress on the inner rings does not exceed 147 MPa.

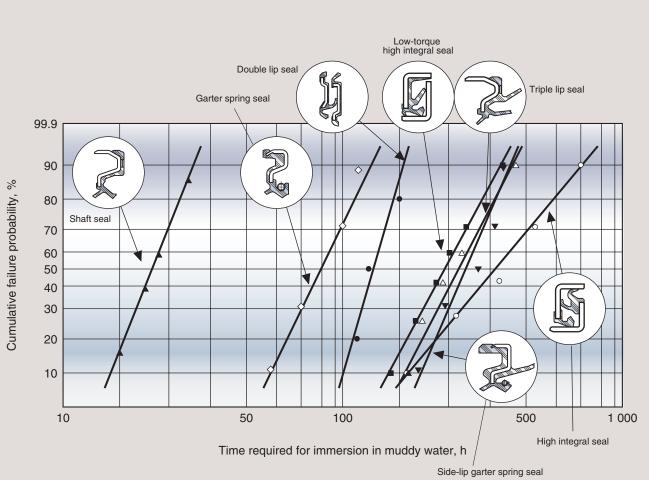
#### 4-3. Fitting tests

When mounting bearings on vehicles, use actual components to confirm that the axial clearance is properly set and the preload is within the appropriate range as specified by the users.

Table 4 Components required for fitting tests

|         | I able 4 Components required for fitting tests     unit: |                         |                      |     |     |                    |               |           |                                 |  |  |  |
|---------|----------------------------------------------------------|-------------------------|----------------------|-----|-----|--------------------|---------------|-----------|---------------------------------|--|--|--|
|         | Components                                               | Usage conditions        | Knuckle<br>(housing) | Hub | CVJ | Spindle<br>(shaft) | Nut<br>washer | Snap ring | Others<br>(sensor rotors, etc.) |  |  |  |
|         | Driven<br>wheels                                         | Inner ring<br>rotations | 6                    | 6   | 6   | _                  | 18            | 6         | —                               |  |  |  |
| HUB I   | Non-driven                                               | Inner ring<br>rotations | 6                    | 6   | _   | —                  | 18            | 6         | —                               |  |  |  |
|         | wheels                                                   | Outer ring rotations    | _                    | 6   | _   | 6                  | 18            | 6         | 6                               |  |  |  |
|         | Driven<br>wheels                                         | Inner ring rotations    | _                    | 6   | 6   | _                  | 18            | _         | _                               |  |  |  |
| HUB II  | Non-driven                                               | Inner ring<br>rotations | _                    | 6   | _   | _                  | 18            | _         | _                               |  |  |  |
|         | wheels                                                   | Outer ring rotations    | —                    | —   | _   | 6                  | 18            | _         | 6                               |  |  |  |
| HUB III | Driven<br>wheels                                         | Inner ring<br>rotations | _                    | _   | 6   | _                  | 18            |           | _                               |  |  |  |

### 5. Hub Unit Bearing Seals


NSK offer customers a flexible choice of seals (illustrated in Table 5 and Fig. 9) that vary in capabilities and cost.



Please submit your specific requirements for muddy water resistance, rotation torque, and cost to us for design evaluation.

#### Table 5 Hub unit bearing seals

| on                                            | Muddy water<br>resistance | Friction torque | Cost |
|-----------------------------------------------|---------------------------|-----------------|------|
| inless<br>el plate<br>inless<br>el plate      | AA                        | С               | С    |
| r-carbon<br>I plate<br>nless<br>I plate       | A                         | BB              | В    |
| r-carbon<br>el plate<br>nless<br>el spring    | A                         | BB              | В    |
| iless<br>plate                                | A                         | A               | BB   |
| v-carbon<br>el plate<br>ainless<br>vel spring | В                         | A               | BB   |
| v-carbon<br>el plate<br>v-carbon<br>el plate  | BB                        | AA              | A    |
| w-carbon<br>eel plate                         | С                         | AA              | AA   |



#### **Testing conditions**

- Mixture of elements in water: 125g of Kanto Loam powder and 50g of salt to 1 liter of water
- Water level: center of shaft
- Wobbling eccentricity: 0.4 TIR
- Number of rotations: 1 000 min<sup>-1</sup>

• Cycle patterns: 
$$\begin{pmatrix} \text{immersion} \\ + \\ \text{rotations} \end{pmatrix} \begin{pmatrix} \text{immersion} \\ + \\ \text{stop} \end{pmatrix} \begin{pmatrix} \text{dry-up} \\ + \\ \text{stop} \end{pmatrix} \begin{pmatrix} \text{dry-up} \\ + \\ \text{rotations} \end{pmatrix}$$

Fig. 9 Muddy water resistance performance of hub unit bearing seals

### 6. Hub Unit Bearing Grease

Grease is used to lubricate hub unit bearings. Lubrication is applied to prevent metal contact between the hub unit's raceway rings and rolling elements, reducing friction and wear in order to extend its fatigue life.

| Grease Brands          | Manufacturers                      | Thickener | Base Oil    |
|------------------------|------------------------------------|-----------|-------------|
| RareMax AF-1           | Kyodo Yushi Co., Ltd.              | Urea      | Mineral oil |
| 6459 Grease N          | Showa Shell Sekiyu, K.K.           | Urea      | Mineral oil |
| Pyronoc Universal N-6C | Nisseki Mitsubishi Oil Corporation | Urea      | Mineral oil |
| HB-1                   | Kyodo Yushi Co., Ltd.              | Urea      | Mineral oil |
| Ronex MP               | Exxon/Mobil                        | Lithium   | Mineral oil |

Grease with urea as a thickener is especially recommended during transportation by rail, when strong vibrations may cause fretting damage to the hub unit raceway.

#### Table 6 Hub unit bearing grease

### 7. Material for Hub Unit Bearings



#### 7-1. Material for raceway rings and rolling elements

NSK offers customers various types of steel for raceway rings and rolling elements according to their usage conditions and locations, including its most popular, high quality (\*1) steel SUJ2 (SAE52100).

\*1: Unlike general-purpose steel, the steel used for bearings contains fewer non-metallic inclusions, improving the subsurface-originated rolling fatigue life.

#### (1) SUJ2

For many years NSK has been striving to improve the quality of steel with the cooperation of bearing-steel makers. Through advances in the technology and facilities of steel mills and accumulated test data on bearing life, we have developed a high-quality, long-life bearing steel. This steel is a long-life material that is largely free of harmful non-metallic inclusions, and it is frequently adopted in hub unit bearings. It is used for the rollers and contact balls, the outer and inner rings of HUB I (BWD), the outer ring of HUB I (KWD), and as the standard material of the inner rings for HUB II and HUB III.

#### (2) SUJ2 (EP Steel)

Please refer to EP Steel Catalog CAT. NO. 5001 (super-long life, highly reliable bearing steel) for detailed information. Based on NSK's proprietary evaluation method, the technology for mass production of high-purity steel was established, and resulted in SUJ2 (EP Steel), which has a subsurface-originated roller fatigue life that is even longer than that of SUJ2.

This material is used for the outer and inner rings of HUB I (BWD) and the inner rings of HUB I (KWD), HUB II, and HUB III.

#### (3) S53CG (in compliance with SAE1055)

This is an induction heat-treated material, which can be inexpensively die-forged into complex shapes. It is mainly used for parts such as axle components, which require impact-load resistance. Induction heat treatment allows NSK to control the hardness of the component parts. This material is used for the outer rings of HUB II and III, and the flanged inner rings of HUB III.

#### (4) Carburizing Steel (SCr420H)

Carburizing allows proper hardening depth, a dense structure, and appropriate surface and core hardness of materials in order to extend the fatigue life of bearings. This material is used for the inner rings of HUB I (KWD), HUB II, and HUB III.

#### (5) Hi-TF Steel

Please refer to Super TF Bearings, Hi-TF Bearings Catalog CAT. No. 399 for detailed information.

Hi-TF steel was developed in order to extend service life under conditions in which lubricants become mixed with foreign matter, providing excellent resistance against wear and seizure at a reasonable cost. This material is used for the inner rings of HUB II (KWH).

#### (6) New-TF Steel

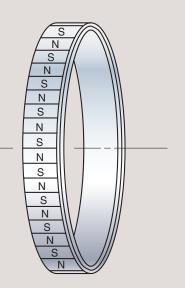
Please refer to New-TF Bearings Catalog CAT. No. 1213 for detailed information.

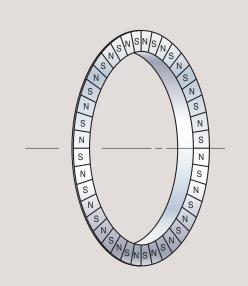
New-TF steel has the advantage of long service life under conditions in which lubricants become mixed with foreign matter, maintaining excellent resistance against wear and seizure at a reasonable cost. This material is used for the inner rings of HUB II (KWH).

#### 7-2. Cage material

The cage for hub unit bearings is made from Nylon 66 with glass fiber. Pressed cages for HUB I (KWD) are made of lowcarbon steel.

Now that improved automotive safety has become a primary goal of manufacturers, the Antilock Brake System (ABS) has become widely used in automobiles, ensuring safe braking on slippery and icy roads.

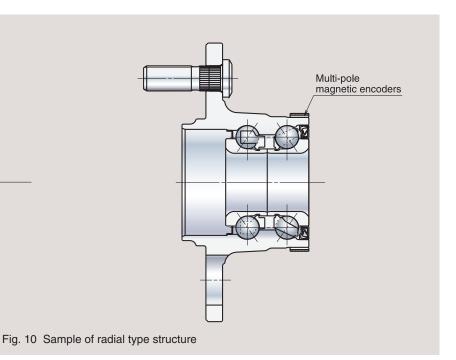

NSK has been active in the research and development of ABS-related products.

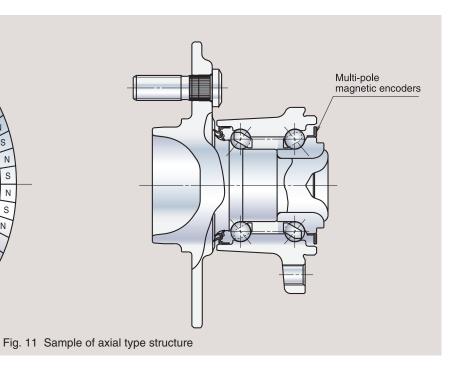

### 8. Hub Unit Bearings with Integral ABS Sensors Hub Unit Bearings

#### 8-1. Multi-pole magnetic encoder for ABS

The next-generation ABS uses annular magnets for multipole encoding, instead of the conventional magnetic sensor rotor. The semiconductor magnetic sensor (active sensor) fixed on the car body detects the rotation speed of the wheel. (1) Types

There are two types of multi-pole magnetic encoder: the radial type, for setting the sensor close to the radius; and the axial type, for setting the sensor close to the axle.




#### (2) Features

By using the active sensor, the multi-pole magnetic encoder allows constant output without the sensor's output voltage relying on the rotation speed of the sensor rotor.

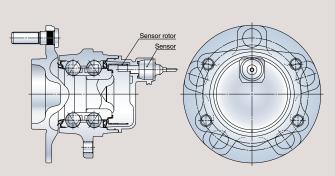
As a result, the encoder can detect the rotation speed of the wheel running at low speed. The active sensor requires no magnet, reducing cost and weight.



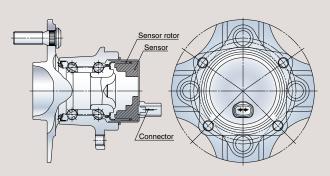


### 8-2. Hub unit bearings with integral ABS sensors

#### (1) Structure


Hub unit bearings with integral ABS sensors incorporate rotation-detecting sensors and the sensor rotors of magnetic rings or multi-pole magnetic encoders. Assembly with electromagnetic sensors (passive sensors) limits the sensor mounting space, making it difficult to mount sensors. NSK has solved these space issues by adopting annular passive sensors with highly efficient magnetic circuits.

#### (2) Features


#### •Lightweight and compact

Bearings with integral sensors and sensor rotors result in lighter, more compact hub units. Incorporating sensor rotors and high integral seals further reduces the size of hub units, increasing the flexibility of the design in the axial direction. •Easier mounting of hub units

Incorporating sensors and sensor rotors eliminates air gap adjustments between the sensors and sensor rotors, which are normally performed on automobile assembly lines, thereby facilitating the mounting of hub units.



Integral end cap type active sensor



•Prevents the harmful effects of foreign objects on hub unit

Incorporating sensors and sensor rotors prevents lower

Higher sensor output values even at low driving speeds

Structures of hub unit bearings with integral sensors for non-

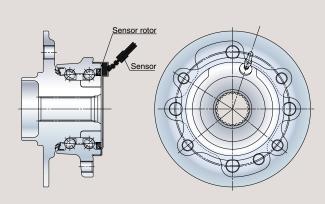
driven wheels (Fig. 12) and for driven wheels (Fig. 13) are

Please contact NSK for hub unit bearings with integral ABS

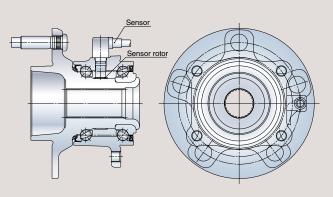
performance caused by the intake of gravel from the road.

performance

•High output sensors


enable stable control.

described below.


sensors.

Integral annular passive sensor

Fig. 12 Structure of HUB III for non-driven wheels with integral ABS sensors



Multi-pole magnetic encoder + Active sensor

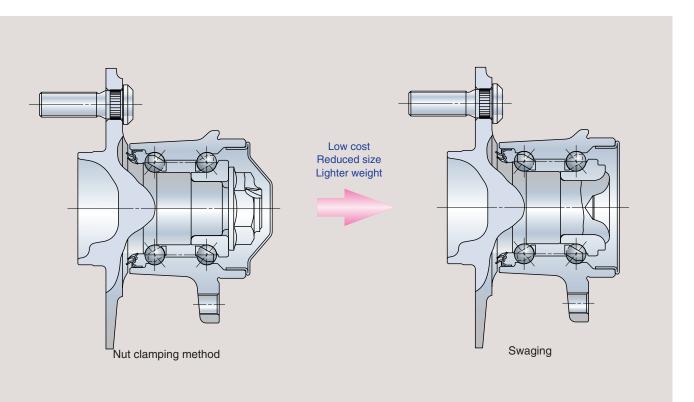
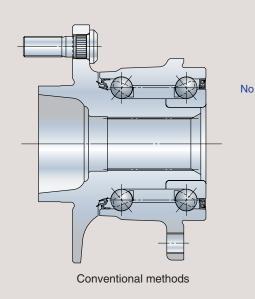


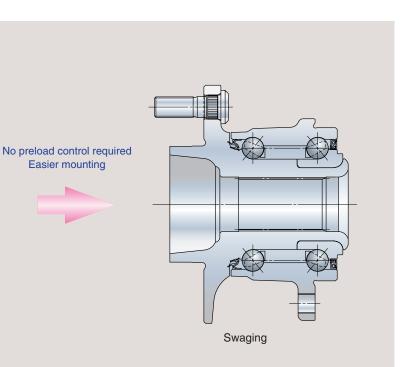
Integral sensors between rows

### 9. Hub Unit Bearings with Swaging

NSK's latest proposals are hub unit bearings with swaging as a HUB III inner ring clamping mechanism. Hub unit bearings for non-driven wheels require fewer components compared to the conventional nut-clamping

method, and manufacturers can benefit from their lower cost, reduced size, and lighter weight. Hub unit bearings for driven



Fig. 14 Structure of the inner ring clamping mechanism for non-driven wheels



wheels require no preload control at mounting, making it easier to mount them to axles.

Figs. 14 and 15 shows samples of the inner ring clamping mechanism.

Please contact NSK for further information about the swaging technique.



### **10. Recommended Bearing Nomenclatures** Hub Unit Bearings

The following table indicates our recommended list of well-established bearings according to vehicle models, displacement, front/rear wheels, and axle load:

Table 7 Bearings reference recommended

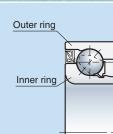
#### (1) For front engine, front wheel drive automobiles

| Displacement         | HU           | IB I        | HU           | B II                       | HU           | BIII        |
|----------------------|--------------|-------------|--------------|----------------------------|--------------|-------------|
| (cc)                 | Front wheels | Rear wheels | Front wheels | Rear wheels                | Front wheels | Rear wheels |
| Less than<br>660     | 35BWD19E     | 25BWD01     | ά            | 27BWK02A*                  | Å            | Â           |
| Less than<br>1 300   | 38BWD22 ↑    |             | ۲            | 27BWK06*<br>公<br>28BWK12** |              | 44BWKH10B   |
| 1 300<br>to<br>1 800 | Î            | Î           | ۲            | Î                          | Î            | ¢           |
| 1 500<br>to<br>2 000 | 40BWD12      | 30BWD04     | 43BWK07**    | 30BWK13A*<br>30BWK17**     | 66BWKH02A    | 49BWKH04A   |
| 2 000<br>to<br>3 000 | 43BWD06B     | 32BWD05     | Ţ            | 30BWK18*                   | Î            | 55BWKH01    |

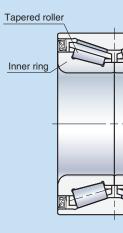
(2) For front engine, rear wheel drive automobiles

| Displacement         | HL                   | IB I                | HU           | B II        | HUB III      |             |  |
|----------------------|----------------------|---------------------|--------------|-------------|--------------|-------------|--|
| (cc)                 | Front wheels         | Rear wheels         | Front wheels | Rear wheels | Front wheels | Rear wheels |  |
| 2 000<br>to<br>2 500 | 32BWD05              | 43BWD06B            | 30BWK18*     | 43BWK07**   | 49BWKH04A    | 66BWKH02A   |  |
| More than<br>2 500   | 38BWD23A<br>38KWD04A | 43BWD06B<br>46KWD04 | Ŷ            | ŵ           | 55BWKH01     | Ŷ           |  |

Notes: 1) Please contact NSK for products with the  $\frac{1}{\sqrt{3}}$  symbol.

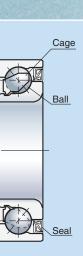

2) In the columns under HUB II, \* indicates outer ring rotation types, \*\* indicates inner ring rotation types.

3) All HUB III are inner ring rotation types.


29 **NSK** 



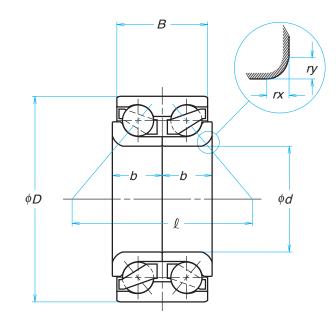
BWD type

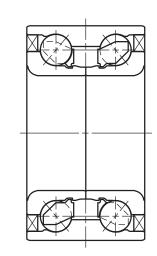




#### KWD type




### **Hub Unit Bearing Dimension Table**


## **HUB I Dimension Table**

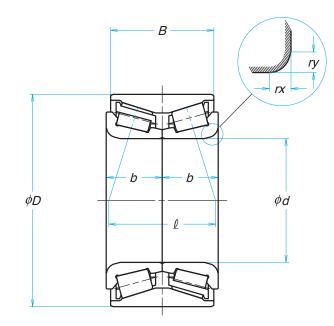


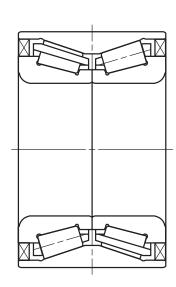








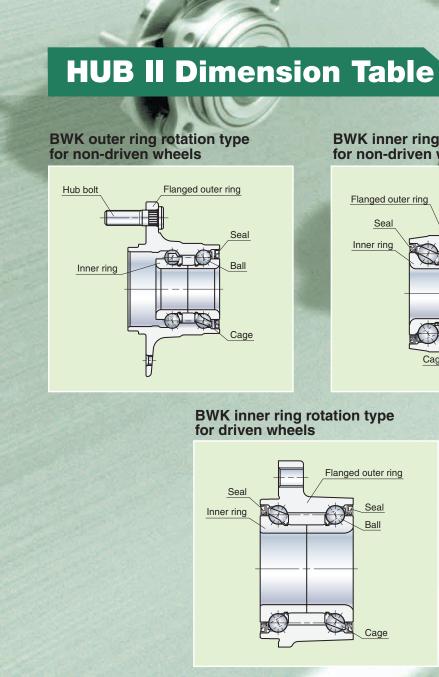

Standard type


Seal integral type

|    | Boundary dimensions (mm) |    |      |                  |           | Distance between Bearing           | Bearing   | Basic load   | 0 ( )                | Seal integral | Mass (kg) |
|----|--------------------------|----|------|------------------|-----------|------------------------------------|-----------|--------------|----------------------|---------------|-----------|
| d  | D                        | В  | b    | <i>rx</i> (Min.) | ry (Min.) | effective load centers $\ell$ (mm) | rotoronco |              | e row<br><i>C</i> or | type          | (approx.) |
| 25 | 52                       | 42 | 21   | 2.6              | 2.6       | 52.0                               | 25BWD01   | C,<br>28 500 | 21 400               | 0             | 0.36      |
| 27 | 60                       | 50 | 25   | 3.6              | 3.6       | 52.8                               | 27BWD01J  | 42 500       | 32 500               | 0             | 0.36      |
| 28 | 58                       | 42 | 21   | 2.8              | 2.8       | 54.1                               | 28BWD03A  | 33 500       | 25 700               | 0             | 0.40      |
| 20 | 61                       | 42 | 21   | 3.6              | 3.6       | 55.5                               | 28BWD01A  | 38 500       | 29 800               | _             | 0.53      |
|    | 55                       | 26 | 13   | 1.2              | 1.2       | 39.1                               | 30BWD08   | 15 600       | 14 700               | 0             | 0.26      |
| 30 | 63                       | 42 | 21   | 3.6              | 3.6       | 57.3                               | 30BWD01A  | 40 500       | 33 000               | -             | 0.55      |
|    | 68                       | 45 | 22.5 | 3.6              | 3.6       | 53.5                               | 30BWD04   | 52 500       | 40 000               | 0             | 0.69      |
| 32 | 72                       | 45 | 22.5 | 3.6              | 3.6       | 61.4                               | 32BWD05   | 58 500       | 45 000               | 0             | 0.80      |
|    | 64                       | 37 | 18.5 | 2                | 1.2       | 52.5                               | 34BWD04B  | 36 500       | 31 000               | 0             | 0.82      |
|    | 64                       | 37 | 18.5 | 3.3              | 2.4       | 50.7                               | 34BWD11   | 36 500       | 31 000               | 0             | 0.46      |
| 34 | 66                       | 37 | 18.5 | 3.3              | 2.4       | 51.0                               | 34BWD10B  | 40 500       | 33 500               | 0             | 0.51      |
|    | 68                       | 42 | 21   | 3.5              | 2.5       | 55.7                               | 34BWD07B  | 44 000       | 35 000               | 0             | 0.64      |
|    | 68                       | 37 | 18.5 | 2                | 1.2       | 55.7                               | 34BWD09A  | 44 000       | 35 000               | 0             | 0.54      |
|    | 65                       | 37 | 18.5 | 3                | 3         | 51.0                               | 35BWD19E  | 36 500       | 31 000               | 0             | 0.48      |
|    | 68                       | 30 | 16.5 | 3.5              | 3.5       | 52.4                               | 35BWD07   | 42 500       | 36 500               | -             | 0.48      |
| 35 | 68                       | 30 | 16.5 | 3.5              | 3.5       | 59.6                               | 35BWD07A  | 40 500       | 34 500               | -             | 0.48      |
|    | 68                       | 36 | 19.5 | 3.5              | 3.5       | 58.4                               | 35BWD16   | 42 500       | 36 500               | -             | 0.48      |
|    | 72                       | 31 | 16.5 | 3.5              | 3.4       | 53.0                               | 35BWD06A  | 50 000       | 40 000               | -             | 0.55      |
|    | 68                       | 33 | 16.5 | 3.5              | 3.1       | 52.4                               | 36BWD04   | 42 500       | 36 500               | _             | 0.48      |
| 36 | 72                       | 42 | 21   | 3                | 3         | 61.1                               | 36BWD03   | 50 000       | 40 000               | -             | 0.68      |
|    | 72.041                   | 34 | 17   | 2.5              | 2         | 51.6                               | 36BWD01B  | 50 000       | 40 000               | _             | 0.57      |
| 37 | 74                       | 45 | 22.5 | 2.4              | 2.4       | 60.9                               | 37BWD01   | 52 500       | 44 000               | 0             | 0.79      |

|    | Bou    | ndary din | nensions (I | mm)              |           | Distance between                     | Bearing   | Basic load           |                          | Seal integral | Mass (ko |
|----|--------|-----------|-------------|------------------|-----------|--------------------------------------|-----------|----------------------|--------------------------|---------------|----------|
| d  | D      | В         | b           | <i>rx</i> (Min.) | ry (Min.) | effective load centers <i>l</i> (mm) | reference | Double<br><i>C</i> , | e row<br>C <sub>or</sub> | type          | (approx. |
|    | 70     | 37        | 18.5        | 3                | 3         | 51.0                                 | 38BWD19   | 44 500               | 39 500                   | 0             | 0.48     |
|    | 70     | 38        | 19          | 4                | 3.5       | 55.2                                 | 38BWD21   | 44 500               | 39 500                   | 0             | 0.57     |
|    | 71     | 30        | 16.5        | 3.5              | 3.4       | 61.7                                 | 38BWD09A  | 45 500               | 39 000                   | _             | 0.50     |
|    | 71     | 39        | 19.5        | 3.5              | 3.4       | 65.9                                 | 38BWD22   | 42 000               | 37 500                   | 0             | 0.62     |
|    | 72     | 33        | 18          | 3.5              | 3.4       | 56.5                                 | 38BWD12   | 48 500               | 42 000                   | _             | 0.56     |
|    | 72.041 | 34        | 17          | 2.5              | 2         | 55.9                                 | 38BWD04   | 47 500               | 41 000                   | _             | 0.55     |
| 38 | 74     | 33        | 18          | 3.5              | 3.5       | 57.2                                 | 38BWD01A  | 52 500               | 44 000                   | _             | 0.60     |
|    | 74     | 50        | 25          | 4.5              | 3.6       | 57.2                                 | 38BWD06D  | 52 500               | 44 000                   | 0             | 0.82     |
|    | 74     | 40        | 20          | 3.8              | 3.8       | 56.7                                 | 38BWD10B  | 52 500               | 44 000                   | 0             | 0.69     |
|    | 74     | 33        | 18          | 4                | 3.5       | 57.2                                 | 38BWD15A  | 52 500               | 44 000                   | -             | 0.61     |
|    | 74     | 33        | 18          | 3.5              | 3.5       | 67.2                                 | 38BWD24   | 48 000               | 43 000                   | -             | 0.62     |
|    | 76     | 43        | 21.5        | 4.8              | 3.8       | 71.9                                 | 38BWD23A  | 48 000               | 43 500                   | 0             | 0.82     |
|    | 80     | 33        | 18          | 3.5              | 3.5       | 64.1                                 | 38BWD18   | 47 500               | 46 000                   | -             | 0.79     |
|    | 68     | 37        | 18.5        | 3.6              | 3.6       | 54.5                                 | 39BWD03   | 38 000               | 34 000                   | 0             | 0.5      |
| 39 | 72     | 37        | 18.5        | 3.3              | 2.4       | 53.9                                 | 39BWD01L  | 47 500               | 41 000                   | 0             | 0.60     |
|    | 74     | 39        | 19.5        | 3.8              | 3.8       | 56.4                                 | 39BWD05   | 48 500               | 42 500                   | 0             | 0.66     |
|    | 74     | 40        | 20          | 3.8              | 3.8       | 57.4                                 | 40BWD06D  | 54 000               | 47 000                   | 0             | 0.66     |
|    | 74     | 42        | 21          | 3.5              | 3.5       | 70.1                                 | 40BWD12   | 48 000               | 43 000                   | 0             | 0.71     |
| 40 | 74     | 36        | 18          | 4.8              | 3.8       | 64.1                                 | 40BWD15A  | 48 000               | 43 000                   | 0             | 0.62     |
|    | 74     | 34        | 18          | 2.6              | 2.6       | 58.8                                 | 40BWD16   | 50 500               | 45 500                   | -             | 0.59     |
|    | 76     | 38        | 20.5        | 3                | 1.8       | 55.0                                 | 40BWD05   | 52 500               | 44 500                   | 0             | 0.70     |
|    | 76     | 33        | 16.5        | 3.6              | 3.6       | 54.3                                 | 40BWD08A  | 51 500               | 48 000                   | 0             | 0.61     |
|    | 80     | 34        | 18          | 2.6              | 2.6       | 60.3                                 | 40BWD07A  | 65 500               | 56 000                   | -             | 0.73     |
|    | 80     | 34        | 18          | 3.5              | 3         | 57.8                                 | 40BWD14   | 47 500               | 46 000                   | 0             | 0.77     |
|    | 76     | 33        | 16.5        | 3.6              | 3.6       | 54.3                                 | 42BWD12   | 46 000               | 43 000                   | 0             | 0.65     |
|    | 76     | 35        | 19          | 3.6              | 3.5       | 62.1                                 | 42BWD06   | 50 500               | 46 000                   | -             | 0.64     |
| 42 | 78     | 38        | 19          | 3.5              | 2.5       | 57.0                                 | 42BWD09   | 55 000               | 48 500                   | 0             | 0.72     |
|    | 80     | 45        | 22.5        | 3.8              | 3.8       | 63.9                                 | 42BWD11   | 59 000               | 50 500                   | 0             | 0.90     |
|    | 80     | 34        | 18          | 3.5              | 3         | 57.8                                 | 42BWD13   | 47 500               | 46 000                   | 0             | 0.76     |
|    | 76     | 43        | 21.5        | 4.8              | 3.8       | 71.9                                 | 43BWD12A  | 48 000               | 43 500                   | 0             | 0.71     |
|    | 79     | 38        | 20.5        | 4                | 3         | 58.7                                 | 43BWD08   | 55 000               | 48 500                   | 0             | 0.77     |
| 43 | 79     | 45        | 22.5        | 4.8              | 3.1       | 76.4                                 | 43BWD13A  | 49 500               | 47 000                   | 0             | 0.87     |
|    | 80     | 45        | 25          | 3.5              | 3         | 73.1                                 | 43BWD03   | 55 000               | 48 500                   | -             | 0.91     |
|    | 82     | 45        | 22.5        | 3.5              | 3.4       | 65.5                                 | 43BWD06B  | 62 000               | 54 500                   | 0             | 0.94     |
|    | 83     | 45        | 22.5        | 3.8              | 3.8       | 66.8                                 | 45BWD06   | 57 500               | 52 500                   | 0             | 0.95     |
|    | 84     | 39        | 20.5        | 2.6              | 2.6       | 72.9                                 | 45BWD03   | 58 500               | 52 500                   | 0             | 0.88     |
| 45 | 84     | 40        | 21          | 4.5              | 3.5       | 62.8                                 | 45BWD07B  | 69 000               | 61 000                   | 0             | 0.89     |
|    | 84     | 40        | 21          | 4.5              | 3.5       | 62.9                                 | 45BWD09   | 64 500               | 57 500                   | 0             | 0.90     |
|    | 84     | 45        | 22.5        | 3.5              | 3.35      | 76.8                                 | 45BWD10   | 58 500               | 52 500                   | 0             | 0.98     |
| 46 | 79     | 45        | 22.5        | 4.8              | 3.1       | 76.4                                 | 46BWD01A  | 49 500               | 47 000                   | 0             | 0.79     |
| 48 | 89     | 42        | 22          | 4.5              | 3.5       | 67.2                                 | 48BWD01   | 69 000               | 62 000                   | 0             | 0.9      |
|    | 84     | 50        | 25          | 3.5              | 2         | 87.1                                 | 49BWD02   | 46 000               | 47 000                   | 0             | 1.00     |
| 49 | 88     | 46        | 23          | 3.7              | 3.7       | 71.1                                 | 49BWD01B  | 64 500               | 60 000                   | 0             | 1.05     |

## Hub Unit Bearing Dimension Table



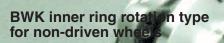


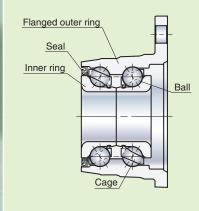

Standard type

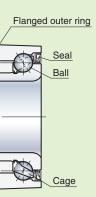
Seal integral type

|        | Во     | undary dir | nensions ( | mm)              |                  | Distance between effective load | Bearing   | Basic load<br>Doubl | ratings (N)  | Seal integral | Mass (kg) |
|--------|--------|------------|------------|------------------|------------------|---------------------------------|-----------|---------------------|--------------|---------------|-----------|
| d      | D      | В          | b          | <i>rx</i> (Min.) | <i>ry</i> (Min.) | centers <i>l</i> (mm)           | rataranca |                     | $C_{\rm or}$ | type          | (approx.) |
| 27     | 52     | 43         | 21.5       | 3.3              | 3.3              | 36.9                            | 27KWD02   | 53 000              | 73 500       | -             | 0.41      |
| 30     | 58     | 42         | 21         | 3.3              | 3.3              | 31.8                            | 30KWD01A  | 62 000              | 89 000       | 0             | 0.50      |
| 34     | 67.8   | 40         | 21.5       | 5                | 3.6              | 37.4                            | 34KWD03D  | 89 500              | 120 000      | -             | 0.73      |
| 35     | 60     | 30.4       | 16.2       | 2.5              | 2.5              | 27.6                            | 35KWD02   | 60 000              | 93 500       | -             | 0.38      |
| 37     | 74     | 45         | 22.5       | 2.4              | 2.4              | 36.9                            | 37KWD01   | 89 000              | 123 000      | 0             | 0.84      |
|        | 64     | 37         | 18.5       | 3                | 3                | 31.2                            | 38KWD01A  | 60 500              | 88 000       | 0             | 0.46      |
| 38     | 68     | 37         | 18.5       | 3                | 3                | 31.2                            | 38KWD02   | 63 000              | 92 500       | -             | 0.56      |
|        | 76     | 40         | 21.5       | 5                | 4                | 38.1                            | 38KWD04A  | 92 500              | 138 000      | -             | 0.94      |
| 38.993 | 72.011 | 37         | 18.5       | 3.3              | 2.4              | 32.5                            | 39KWD02   | 68 500              | 92 500       | 0             | 0.63      |
|        | 72     | 38         | 19         | 4.75             | 3.6              | 36.3                            | 42KWD02A  | 76 500              | 108 000      | -             | 0.58      |
| 42     | 72     | 38         | 19         | 4.7              | 3.6              | 36.3                            | 42KWD02D  | 76 500              | 108 000      | -             | 0.58      |
|        | 80     | 38         | 19         | 3.5              | 3.5              | 32.8                            | 42KWD08   | 95 000              | 128 000      | _             | 0.82      |
|        | 76     | 40         | 21.5       | 3.6              | 3.5              | 38.3                            | 43KWD02   | 94 000              | 138 000      | -             | 0.82      |
| 43     | 77     | 38         | 21         | 3.5              | 3.5              | 38.9                            | 43KWD04   | 79 500              | 111 000      | -             | 0.81      |
|        | 77     | 50         | 25         | 3.5              | 3.5              | 40.6                            | 45KWD04   | 96 000              | 142 000      | -             | 0.89      |
| 45     | 78     | 37         | 20         | 3.5              | 3.5              | 37.3                            | 45KWD03   | 91 000              | 130 000      | -             | 0.73      |
|        | 80     | 50         | 25         | 3.8              | 3.8              | 42.5                            | 45KWD05   | 99 500              | 153 000      | 0             | 1.02      |
|        | 77     | 41         | 22.5       | 4.8              | 3.8              | 35.8                            | 46KWD04   | 82 500              | 138 000      | -             | 0.84      |
| 46     | 78     | 49         | 24.5       | 5                | 4                | 35.8                            | 46KWD03   | 82 500              | 138 000      | 0             | 0.97      |
| 47     | 82     | 57.5       | 28.75      | 3.5              | 3.5              | 57.5                            | EP47KWD01 | 95 000              | 138 000      | 0             | 1.10      |



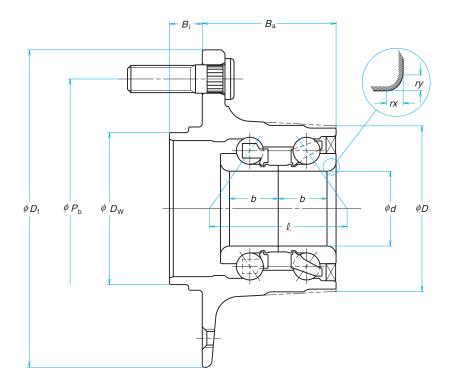

KWH inner ring rotation type for driven/non-driven wheels



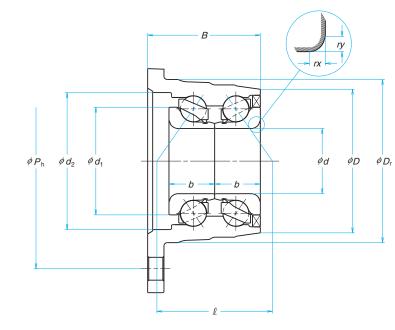


### **Hub Unit Bearing Dimension Table**

0



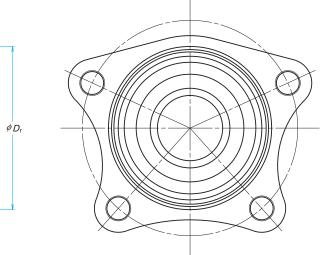




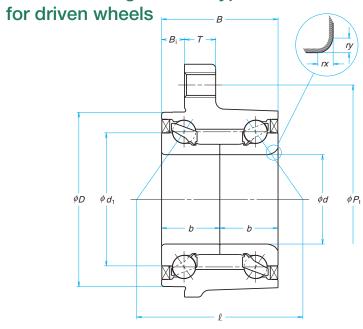


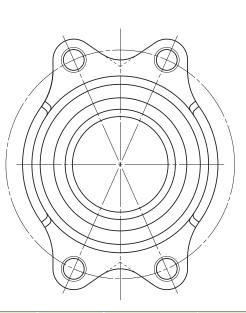

BWK inner ring rotation type for non-driven wheels




|    |      |         | Bounda | ry dimei    | nsions (    | (mm)    |                                     | I                |                  | Distance<br>between<br>effective | Bearing    | Basic load<br>Doubl | ratings (N)<br>Ie row |                 | Mass (kg) |
|----|------|---------|--------|-------------|-------------|---------|-------------------------------------|------------------|------------------|----------------------------------|------------|---------------------|-----------------------|-----------------|-----------|
| d  | D    | $B_{i}$ | b      | $B_{\rm a}$ | $D_{\rm f}$ | $D_{w}$ | $P_{\scriptscriptstyle \mathrm{b}}$ | <i>rx</i> (Min.) | <i>ry</i> (Min.) | load centers<br>ℓ (mm)           | reference  | $C_r$               | ${\cal C}_{ m or}$    | flange<br>bolts | (approx.) |
|    | 60   | 15      | 20     | 45          | 134         | 59      | 100                                 | 3.5              | 3.5              | 49.8                             | 27BWK02A   | 38 500              | 29 600                | 4               | 1.33      |
|    | 63.2 | 15.5    | 27.5   | 57.5        | 148         | 66      | 114.3                               | 4.5              | 3.6              | 61.8                             | 27BWK03J   | 41 500              | 30 500                | 4               | 1.9       |
| 27 | 64.7 | 15      | 25     | 52.5        | 134         | 59      | 100                                 | 4.5              | 3.6              | 59.8                             | 27BWK04D2a | 38 500              | 29 600                | 4               | 1.45      |
|    | 65.4 | 15.5    | 25     | 52.5        | 148         | 66      | 114.3                               | 4.5              | 3.6              | 59.8                             | 27BWK06    | 38 500              | 29 600                | 4               | 1.9       |
|    | 63   | 14      | 24     | 56.5        | 125         | 56      | 100                                 | 4                | 3.3              | 56.8                             | 28BWK08J   | 41 500              | 30 500                | 4               | 1.75      |
|    | 64   | 14      | 25.25  | 57          | 141         | 56      | 100                                 | 3.5              | 3.5              | 59.3                             | 28BWK06D   | 38 500              | 29 600                | 4               | 1.74      |
| 28 | 64   | 6       | 20     | 49.5        | 120         | 60      | 100                                 | 3.5              | 2.5              | 49.8                             | 28BWK15J   | 38 500              | 29 600                | 4               | 1.38      |
|    | 69   | 10.35   | 24     | 57.5        | 135         | 56.9    | 100                                 | 3.5              | 3.5              | 58.9                             | 28BWK16    | 44 000              | 34 500                | 5               | 1.8       |
|    | 66.1 | 15.5    | 27.5   | 57.5        | 148         | 66      | 114.3                               | 4.5              | 3.6              | 64.3                             | 30BWK13A   | 44 000              | 34 500                | 4               | 1.93      |
|    | 67   | 11.5    | 20.5   | 55          | 136         | 56      | 100                                 | 3.5              | 2.5              | 51.2                             | 30BWK02J   | 41 500              | 31 000                | 4               | 1.8       |
| 30 | 67   | 14      | 25     | 56.5        | 125         | 56      | 100                                 | 4                | 3.5              | 61.3                             | 30BWK11    | 44 000              | 34 500                | 4               | 1.91      |
|    | 73.8 | 15.5    | 24     | 49          | 148         | 66      | 114.3                               | 4.5              | 3.6              | 59.7                             | 30BWK18    | 55 000              | 40 000                | 4               | 1.98      |
| 33 | 73   | 14.5    | 25.5   | 59          | 140         | 67      | 114.3                               | 4                | 4                | 60.7                             | 33BWK02S   | 50 000              | 39 500                | 5               | 2.17      |
| 41 | 86.5 | 17.5    | 20     | 37          | 170         | 105     | 139.7                               | 3.6              | 3.6              | 71.0                             | 41BWK03    | 52 000              | 46 500                | 5               | 2.69      |

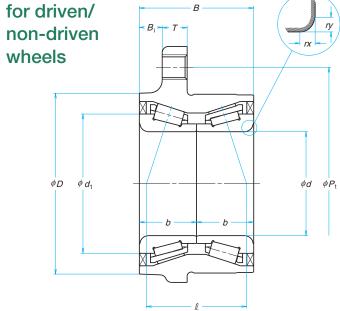


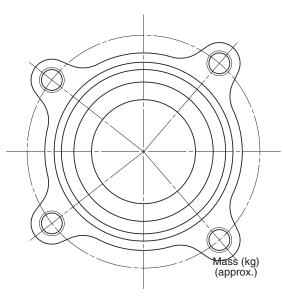

|    |      |    | Bounda | ry dime        | nsions ( | mm)     |         |                  |           | Distance<br>between                 | Bearing   |                         | ratings (N)              | No. of          | Mass (kg) |
|----|------|----|--------|----------------|----------|---------|---------|------------------|-----------|-------------------------------------|-----------|-------------------------|--------------------------|-----------------|-----------|
| d  | В    | b  | D      | D <sub>r</sub> | $d_1$    | $d_{2}$ | $P_{h}$ | <i>rx</i> (Min.) | ry (Min.) | effective<br>load centers<br>ℓ (mm) | reference | Doubl<br>C <sub>r</sub> | e row<br>C <sub>or</sub> | flange<br>bolts | (approx.) |
| 28 | 51.8 | 21 | 66     | 73             | 46.2     | 61      | 97      | 3.6              | 3.6       | 62.9                                | 28BWK12   | 35 000                  | 29 300                   | 4               | 1.03      |
|    | 51.8 | 21 | 60.5   | 75             | 49.5     | 63      | 99      | 3.6              | 3.6       | 53.1                                | EP30BWK16 | 47 000                  | 35 500                   | 4               | 1.06      |
|    | 51.8 | 21 | 66     | 75             | 45.5     | 63      | 99      | 3.6              | 3.6       | 53.1                                | 30BWK03B  | 47 000                  | 35 500                   | 4               | 1.05      |
| 30 | 51.8 | 21 | 66     | 75             | 49.5     | 63      | 99      | 3.6              | 3.6       | 63.7                                | 30BWK17   | 38 500                  | 31 500                   | 4               | 1.15      |
|    | 51.8 | 21 | 67     | 75             | 45.5     | 63      | 99      | 3.6              | 3.6       | 54.3                                | 30BWK10   | 40 500                  | 33 000                   | 4               | 1.01      |
|    | 46.3 | 21 | 67     | 80             | 49.5     | 71      | 106     | 3.6              | 3.6       | 53.1                                | EP30BWK14 | 47 000                  | 35 500                   | 4               | 1.35      |


## Hub Unit Bearing Dimension Table



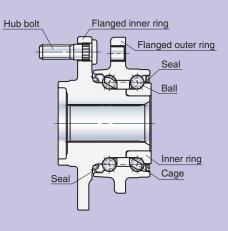
## **HUB II**


### BWK inner ring rotation type






|    |      |      | Bounda | ry dime | nsions ( | (mm)    |         |                  |                  | Distance<br>between    | <b>D</b> .           | Basic load | ratings (N)  | No. of |                        |
|----|------|------|--------|---------|----------|---------|---------|------------------|------------------|------------------------|----------------------|------------|--------------|--------|------------------------|
|    |      |      |        | ,       |          |         |         |                  |                  | effective              | Bearing<br>reference | Doubl      | e row        | flange | Mass (kg)<br>(approx.) |
| d  | D    | В    | b      | $d_1$   | Т        | $B_{i}$ | $P_{t}$ | <i>rx</i> (Min.) | <i>ry</i> (Min.) | load centers<br>ℓ (mm) |                      | C,         | $C_{\rm or}$ | bolts  | (approvid)             |
| 38 | 87.4 | 54.8 | 18     | 55.2    | 10       | 3.2     | 106     | 3.5              | 3.5              | 57.3                   | 38BWK01J             | 59 000     | 49 500       | 4      | 1.25                   |
|    | 83   | 42.5 | 22     | 58.6    | 14       | 16.5    | 102     | 5                | 3.5              | 58.7                   | 43BWK03D             | 55 000     | 48 500       | 4      | 1.22                   |
| 43 | 83   | 47.5 | 24.5   | 58.6    | 14       | 21.5    | 102     | 5                | 3.5              | 63.7                   | 43BWK04              | 55 000     | 48 500       | 4      | 1.32                   |
|    | 84   | 56   | 28     | 64      | 15       | 11      | с       | 4.8              | 3.1              | 79.9                   | 43BWK07              | 52 500     | 50 000       | 4      | 1.67                   |

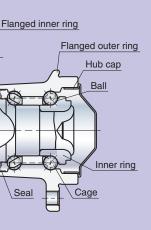

### KWH inner ring rotation type





|    |    |    | Boundai | y dimer | nsions (I | mm)     |         |                  |                  | Distance<br>between | Deering              | Basic load | ratings (N)        | No. of               |                        |
|----|----|----|---------|---------|-----------|---------|---------|------------------|------------------|---------------------|----------------------|------------|--------------------|----------------------|------------------------|
|    |    |    |         | -       |           | ,       |         |                  |                  | effective           | Bearing<br>reference | Doubl      | e row              | outer ring<br>flange | Mass (kg)<br>(approx.) |
| d  | D  | В  | b       | $d_1$   | Т         | $B_{i}$ | $P_{t}$ | <i>rx</i> (Min.) | <i>ry</i> (Min.) | load centers        | Telefenee            | $C_{r}$    | ${\cal C}_{ m or}$ | bolts                | ()                     |
| 50 | 86 | 55 | 27.5    | 67      | 12        | 32      | 112     | 5.5              | 5.5              | 49.2                | NTF50KWH01B          | 98 000     | 157 000            | 4                    | 1.488                  |
| 51 | 87 | 55 | 27.5    | 68.4    | 15.5      | 19.5    | 112     | 5                | 5                | 50.0                | 51KWH01A             | 101 000    | 164 000            | 4                    | 1.533                  |

| HUB<br>BWKH inner<br>for non-drive | r rinen |
|------------------------------------|---------|
| BWKH inner                         | rii     |
| for driven wi                      | hee     |



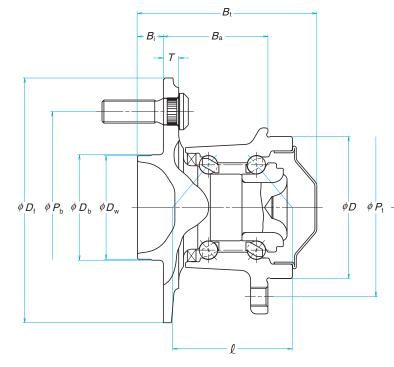

37 **NSK** 

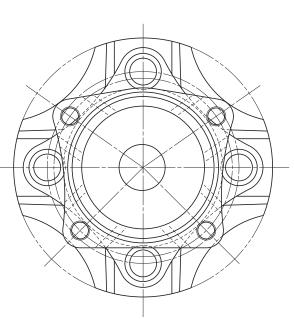
### Hub Unit Bearing Dimension Table

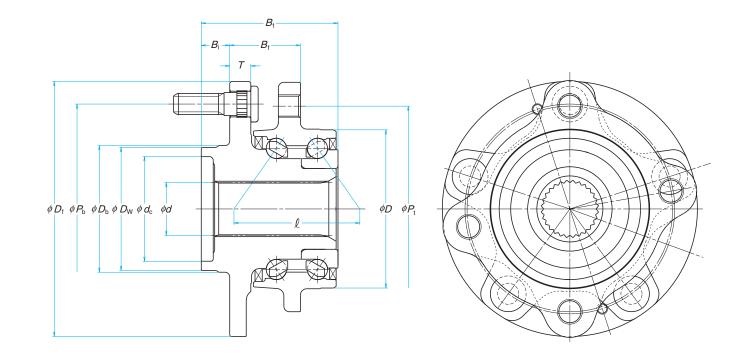
# III Dimension Table

#### ing rotation type wheels




# ring rotation type





# HUB III

### BWKH inner ring rotation type for non-driven wheels

BWKH inner ring rotation type for driven wheels







|       |    |         |             | Boun        | dary d  | limens     | ions (r | mm)     |                                     |         |             | Distance<br>between<br>effective<br>load | Bearing<br>reference | rating | c load<br>gs (N) | No. of<br>flanged<br>inner ring | No. of<br>outer ring<br>flange | Mass<br>(kg) |
|-------|----|---------|-------------|-------------|---------|------------|---------|---------|-------------------------------------|---------|-------------|------------------------------------------|----------------------|--------|------------------|---------------------------------|--------------------------------|--------------|
|       | _  | _       | _           |             | -       | -          | _       | _       |                                     | _       | _           | centers                                  | 1010101100           | Doub   | le row           | hub bolts                       | tapped                         | (approx.)    |
| d *1  | D  | $B_{t}$ | $B_{\rm f}$ | $d_{\rm c}$ | $D_{w}$ | $D_{ m b}$ | Т       | $B_{i}$ | $P_{\scriptscriptstyle \mathrm{b}}$ | $P_{t}$ | $D_{\rm f}$ | ℓ (mm)                                   |                      | C,     | $C_{\rm or}$     |                                 | holes                          |              |
| 26    | 74 | 81.5    | 54.5        | 45          | 54      | 55         | 10      | 13.5    | 100                                 | 93      | 135         | 80.6                                     | 55BWKH02A            | 42 000 | 37 500           | 4                               | 4                              | 2.7          |
| 26    | 84 | 98.5    | 69          | 51          | 60      | 62         | 10      | 13.5    | 114.3                               | 106     | 152         | 81.7                                     | 58BWKH03             | 48 000 | 43 500           | 5                               | 4                              | 3.32         |
| 27    | 87 | 74.5    | 38.5        | 57          | 67      | 69         | 11.5    | 15.5    | 114.3                               | 112     | 139         | 68.6                                     | 66BWKH02A            | 53 500 | 52 000           | 5                               | 4                              | 3.58         |
| 31.75 | 84 | 102.5   | 67.5        | 50          | 60      | 62         | 11      | 14      | 114.3                               | 112     | 154         | 98.6                                     | 64BWKH02A            | 46 500 | 46 500           | 5                               | 4                              | 3.84         |

\*1: Pitch circle diameter of spline

|             |    |             | Bour    | idary di | mensio  | ons (mn | ו)                                  |         |             | Distance<br>between<br>effective<br>load | Bearing reference |                | : load<br>js (N) | No. of<br>flanged<br>inner ring | No. of<br>outer ring<br>flange<br>tapped |           | ABS<br>Sensor<br>integral |
|-------------|----|-------------|---------|----------|---------|---------|-------------------------------------|---------|-------------|------------------------------------------|-------------------|----------------|------------------|---------------------------------|------------------------------------------|-----------|---------------------------|
| $D_{\rm w}$ | D  | $D_{\rm b}$ | $B_{a}$ | Т        | $B_{i}$ | $B_{t}$ | $P_{\scriptscriptstyle \mathrm{b}}$ | $P_{t}$ | $D_{\rm f}$ | centers<br>ℓ (mm)                        |                   | C <sub>r</sub> |                  | hub bolts                       | holes                                    | (approva) | type                      |
| 54          | 67 | 55          | 54.5    | 8        | 13.5    | 93.5    | 100                                 | 92      | 135         | 62.3                                     | 44BWKH09          | 3 500          | 26 800           | 4                               | 4                                        | 2.3       | 0                         |
| 54          | 74 | 55          | 54.5    | 8        | 13.5    | 93.5    | 100                                 | 93      | 135         | 62.3                                     | 44BWKH10B         | 33 500         | 26 800           | 4                               | 4                                        | 2.34      | 0                         |
| 54          | 74 | 55          | 54.5    | 10       | 13.5    | 93.3    | 100                                 | 93      | 135         | 66.1                                     | 49BWKH04A         | 50 500         | 38 000           | 5                               | 4                                        | 2.96      | 0                         |
| 56.8        | 86 | 57.3        | 48      | 9        | 14.5    | 100.8   | 100                                 | -       | 126         | 57.4                                     | 52BWKH01          | 61 000         | 44 500           | 5                               | 4                                        | 3.4       | -                         |
| 60          | 74 | 62          | 74.5    | 11       | 13.5    | 100.8   | 114.3                               | 99      | 152         | 66.1                                     | 49BWKH17          | 50 500         | 38 000           | 5                               | 4                                        | 3.68      | 0                         |
| 60          | 84 | 62          | 69      | 10       | 13.5    | 108.3   | 114.3                               | 106     | 152         | 77.6                                     | 49BWKH11          | 50 500         | 38 000           | 5                               | 4                                        | 3.94      | 0                         |
| 69.5        | 76 | 71.5        | 43      | 10.4     | 25      | 86.1    | 120                                 | 108     | 140         | 63.0                                     | 55BWKH01          | 50 000         | 41 500           | 5                               | 3                                        | 3.8       | 0                         |
| 71.4        | 86 | 71.9        | 48      | 9        | 14.5    | 100.8   | 114.3                               | -       | 140         | 57.5                                     | 53BWKH01          | 66 500         | 49 000           | 5                               | 4                                        | 3.6       | _                         |

## Hub Unit Bearing Dimension Table

#### Table 1 Tolerances for shaft diameters

| classifica | meter<br>ation (mm) | Single plane mean<br>bore diameter<br>deviation | e7  | e8   | e9   | f6  | f7  | f8  | g5  | g6  | h5  |
|------------|---------------------|-------------------------------------------------|-----|------|------|-----|-----|-----|-----|-----|-----|
| Over       | Incl.               | (class normal)                                  |     |      |      |     |     |     |     |     |     |
| 10         | 18                  | 0                                               | -32 | - 32 | - 32 | -16 | -16 | -16 | - 6 | - 6 | 0   |
|            |                     | - 8                                             | -50 | - 59 | - 75 | -27 | -34 | -43 | -14 | -17 | - 8 |
| 18         | 30                  | 0                                               | -40 | - 40 | - 40 | -20 | -20 | -20 | - 7 | - 7 | 0   |
| 10         | 00                  | -10                                             | -61 | - 73 | - 92 | -33 | -41 | -53 | -16 | -20 | - 9 |
| 30         | 50                  | 0                                               | -50 | - 50 | - 50 | -25 | -25 | -25 | - 9 | - 9 | 0   |
|            |                     | -12                                             | -75 | - 89 | -112 | -41 | -50 | -64 | -20 | -25 | -11 |
| 50         | 65                  | 0                                               | -60 | - 60 | - 60 | -30 | -30 | -30 | -10 | -10 | 0   |
| 65         | 80                  | -15                                             | -90 | -106 | -134 | -49 | -60 | -76 | -23 | -29 | -13 |

| h6  | h7  | h8  | h9  | js5   | js6  | js7    | k5  | k6  | m5  | m6  | n6  | p6  | r6         |
|-----|-----|-----|-----|-------|------|--------|-----|-----|-----|-----|-----|-----|------------|
| 0   | 0   | 0   | 0   |       |      |        | + 9 | +12 | +15 | +18 | +23 | +29 | +34        |
| -11 | -18 | -27 | -43 | ±4    | ±5.5 | ± 9    | + 1 | + 1 | + 7 | + 7 | +12 | +18 | +23        |
| 0   | 0   | 0   | 0   |       |      |        | +11 | +15 | +17 | +21 | +28 | +35 | +41        |
| -13 | -21 | -33 | -52 | ±4.5  | ±6.5 | ±10.5  | + 2 | + 2 | + 8 | + 8 | +15 | +22 | +28        |
| 0   | 0   | 0   | 0   |       |      | . 10 5 | +13 | +18 | +20 | +25 | +33 | +42 | +50        |
| -16 | -25 | -39 | -62 | ±5.5  | ±8   | ±12.5  | + 2 | + 2 | + 9 | + 9 | +17 | +26 | +34        |
| 0   | 0   | 0   | 0   | ±6.5  | ±9.5 | ±15    | +15 | +21 | +24 | +30 | +39 | +51 | +60<br>+41 |
| -19 | -30 | -46 | -74 | ± 0.5 | ±9.5 | ±15    | + 2 | + 2 | +11 | +11 | +20 | +32 | +62<br>+43 |

#### Table 2 Tolerances for housing bore diameters

| Diam<br>classificat |       | Single plane mean<br>outside diameter<br>deviation | F6  | F7  | F8  | G6  | G7  | H6  | H7  | H8  | JS6  |
|---------------------|-------|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Over                | Incl. | (class normal)                                     |     |     |     |     |     |     |     |     |      |
| 18                  | 24    | 0                                                  | +33 | +41 | +53 | +20 | +28 | +13 | +21 | +33 | ±6.5 |
| 24                  | 30    | - 9                                                | +20 | +20 | +20 | + 7 | + 7 | 0   | 0   | 0   | ±0.5 |
| 30                  | 40    | 0                                                  | +41 | +50 | +64 | +25 | +34 | +16 | +25 | +39 | ± 8  |
| 40                  | 50    | -11                                                | +25 | +25 | +25 | + 9 | + 9 | 0   | 0   | 0   | ±ο   |
| 50                  | 65    | 0                                                  | +49 | +60 | +76 | +29 | +40 | +19 | +30 | +46 | +0.5 |
| 65                  | 80    | -13                                                | +30 | +30 | +30 | +10 | +10 | 0   | 0   | 0   | ±9.5 |
| 80                  | 100   | 0                                                  | +58 | +71 | +90 | +34 | +47 | +22 | +35 | +54 | ±11  |
| 100                 | 120   | -15                                                | +36 | +36 | +36 | +12 | +12 | 0   | 0   | 0   |      |

| JS7   | K6  | K7  | M6  | M7  | N6  | N7  | P6  | P7  | R7         | S7           | T7           | U7           |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|------------|--------------|--------------|--------------|
| ±10.5 | + 2 | + 6 | - 4 | 0   | -11 | - 7 | -18 | -14 | -20        | - 27         | _            | - 33<br>- 54 |
| 10.5  | -11 | -15 | -17 | -21 | -24 | -28 | -31 | -35 | -41        | - 48         | - 33<br>- 54 | - 40<br>- 61 |
| ±12.5 | + 3 | + 7 | - 4 | 0   | -12 | - 8 | -21 | -17 | -25        | - 34         | - 39<br>- 64 | - 51<br>- 76 |
| 12.5  | -13 | -18 | -20 | -25 | -28 | -33 | -37 | -42 | -50        | - 59         | - 45<br>- 70 | - 61<br>- 86 |
| ±15   | + 4 | + 9 | - 5 | 0   | -14 | - 9 | -26 | -21 | -30<br>-60 | - 42<br>- 72 | - 55<br>- 85 | - 76<br>-106 |
| -15   | -15 | -21 | -24 | -30 | -33 | -39 | -45 | -51 | -32<br>-62 | - 48<br>- 78 | - 64<br>- 94 | - 91<br>-121 |
| 175   | + 4 | +10 | - 6 | 0   | -16 | -10 | -30 | -24 | -38<br>-73 | - 58<br>- 93 | - 78<br>-113 | -111<br>-146 |
| ±17.5 | -18 | -25 | -28 | -35 | -38 | -45 | -52 | -59 | -41<br>-76 | - 66<br>-101 | - 91<br>-126 | -131<br>-166 |

Unit: µm

Unit: µm



#### **Worldwide Sales Offices**

| NSK LtdHeadquarters, Tokyo, Japan                   |                     | Korea:                              | www.kr.nok.ocm                         | Milano                                      | tel: 02-995-19-1                    |
|-----------------------------------------------------|---------------------|-------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------|
| INDUSTRIAL MACHINERY BEARINGS DIVISION-HEADQUARTERS | tel: 03-3779-7227   | NSK Korea Co., Ltd.<br>Seoul        | www.kr.nsk.com                         | Industria Cuscinetti S.p.A.<br>Torino Plant | tal: 0110004011                     |
| AFTERMARKET BUSINESS DIVISION-HEADQUARTERS          | tel: 03-3779-8893   | Changwon Plant                      | tel: 02-3287-0300<br>tel: 055-287-6001 | Netherlands:                                | tel: 0119824811                     |
| AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS           | tel: 03-3779-7189   | Malavsia:                           | lei. 055-267-6001                      | NSK European Distribution Centre            | BV                                  |
| NEEDLE ROLLER BEARINGS STRATEGIC                    | tel: 03-3779-7288   | NSK Bearings (Malaysia) Sdn. Bhd.   | www.mv.nok.com                         | Tilburg                                     | tel: 013-4647647                    |
| DIVISION-HEADQUARTERS                               |                     | Kuala Lumpur                        | tel: 03-7803-8859                      | Poland:                                     | lei. 013-4647647                    |
| PRECISION MACHINERY & PARTS                         | tel: 03-3779-7163   | NSK Micro Precision (M) Sdn. Bhd.   |                                        | NSK Europe Ltd. Warsaw Liaison              | Office                              |
| DIVISION-HEADQUARTERS                               |                     | Malaysia Plant                      | tel: 03-8961-6288                      | Warsaw Liaison                              | tel: 022-645-1525, 1526             |
| Africa                                              |                     | New Zealand:                        | lei. 03-6901-6266                      | NSK Bearings Polska S.A.                    | 101. 022-043-1323, 1320             |
| South Africa:                                       |                     |                                     | unu neli ikn ee ne                     | Kielce                                      | tel: 041-367-0505                   |
| NSK South Africa (Pty) Ltd.                         |                     |                                     | ww.nsk-rhp.co.nz                       | NSK European Technology Cente               | r Poland Office                     |
| Johannesburg                                        | tel: 011-458-3600   | Auckland                            | tel: 09-276-4992                       | Kielce                                      | tel: 041-366-5812                   |
| <b>J</b>                                            | 101.011 400 0000    | Philippines:                        |                                        | NSK Steering Systems Europe (P              |                                     |
| Asia and Oceania                                    |                     | NSK Representative Office           |                                        | Walbrzych                                   | tel: 074-664-4101                   |
| Australia:                                          |                     | Manila                              | tel: 02-759-6246                       | Spain:                                      | 101                                 |
|                                                     | www.au.nsk.com      | Singapore:                          |                                        | NSK Spain S.A.                              |                                     |
| Melbourne                                           | tel: 03-9764-8302   | NSK International (Singapore) Pte L | _td.                                   | Barcelona                                   | tel: 093-289-27-63                  |
| China:                                              |                     | Singapore                           | tel: 65-6273-0357                      | Turkey:                                     | 101. 000-200-27-00                  |
| NSK Hong Kong Ltd.                                  |                     | NSK Singapore (Pte) Ltd. www.nsk    | -singapore.com.sg                      | NSK Bearings Middle East Trading            | bt L o C r                          |
| Hong Kong                                           | tel: 2739-9933      | Singapore                           | tel: 65-6278-1711                      | Istanbul                                    | tel: 0216-355-0398                  |
| Kunšhan ŇSK Co., Ltd.                               |                     | Taiwan:                             |                                        | United Kingdom:                             | 10-000-0090                         |
| Kunshan Plant                                       | tel: 0512-5771-5654 | Taiwan NSK Precision Co., Ltd.      |                                        | NSK Bearings Europe Ltd.                    |                                     |
| Changshu NSK Needle Bearing Co.                     |                     | Taipei                              | tel: 02-2509-3305                      | Peterlee Plant                              | tel: 0191-586-6111                  |
| Jiangsu Plant                                       | tel: 0512-5230-1111 | Taiwan NSK Technology Co., Ltd.     |                                        | NSK European Technology Centre              | 101.0101.000.0111                   |
| Guizhou HS NSK Bearings Co., Ltd.                   |                     | Taipei                              | tel: 02-2509-3305                      | Newark                                      | tel: 01636-605123                   |
| Anshun Plant                                        | tel: 0853-3522332   | Thailand:                           |                                        | NSK UK Ltd.                                 | 101. 01000 000120                   |
| NSK Steering Systems Dongguan C                     | o., Ltd.            | NSK Bearings (Thailand) Co., Ltd.   |                                        | Newark                                      | tel: 01636-605123                   |
| Dongguan Plant                                      | tol: 0760-262-0060  | Bangkok                             | tel: 02-6412-150                       | NSK Precision UK Ltd.                       | 1011 0 1000 000 120                 |
| Zhangjiagang NSK Precision Machir<br>Jiangsu Plant  | nery Co., Ltd.      | NSK Bearings Manufacturing (Thail   |                                        | Newark                                      | tel: 01636-605123                   |
| Jiangsu Plant                                       | tel: 0512-5867-6496 | Chonburi                            | tel: 038-454010~454016                 | NSK Steering Systems Europe Lto             |                                     |
| Timken-NSK Bearings (Suzhou) Co.                    | ., Ltd.             | SIAM NSK Steering Systems Co., L    |                                        | Coventry                                    | tel: 024-76-588588                  |
| Jiangsu Plant                                       | tel: 0512-6665-5666 | Chachoengsao                        | tel: 038-522-343~350                   | North and South America                     |                                     |
| NSK China Technology Center                         |                     | NSK Asia Pacific Technology Center  | (Thailand) Co., Ltd.                   | NSK Americas, Inc. (American H              | leadquarters)                       |
| Jiangsu                                             | tel: 0512-5771-5654 | Chonburi                            | tel: 038-454631~454633                 | Ann Arbor                                   | tel: 734-913-7500                   |
| NSK (Shanghai) Trading Co., Ltd.                    |                     | Vietnam:                            |                                        | Argentina:                                  |                                     |
| Shanghai                                            | tel: 021-6235-0198  | NSK Vietnam Co., Ltd.               |                                        | NSK Argentina SRL                           |                                     |
|                                                     | www.nsk.com.cn      | Hanoi                               | tel: 04-955-0159                       | Buenos Aires                                | tel: 11-4704-5100                   |
| Beijing                                             | tel: 010-6590-8161  | NSK Representative Office           |                                        | Brazil:                                     |                                     |
| Guangzhou                                           | tel: 020-3786-4833  | Ho Chi Minh City                    | tel: 08-822-7907                       | NSK Brasil Ltda.                            | www.br.nsk.com                      |
| Anshun                                              | tel: 0853-3522522   | Europe                              |                                        | São Paulo                                   | tel: 011-3269-4700                  |
| Chengdu                                             | tel: 028-8661-4200  | NSK Europe Ltd.                     |                                        | Canada:                                     |                                     |
| Shenzhen                                            | tel: 0755-25904886  | (European Headquarters)             | www.eu.nsk.com                         | NSK Canada Inc.                             | www.ca.nsk.com                      |
| Changchun                                           | tel: 0431-88988682  | Maidenhead, U.K.                    | tel: 01628-509800                      | Toronto                                     | tel: 905-890-0740                   |
| NSK (China) Investment Co., Ltd.                    |                     | France:                             |                                        | Mexico:                                     |                                     |
| Shanghai                                            | tel: 021-6235-0198  | NSK France S.A.S                    |                                        | NSK Rodamientos Mexicana, S.A. de C.V.      |                                     |
| India:                                              | 101. 021-0200-0190  | Paris                               | tel: 01-30-57-39-39                    | Mexico City                                 | tel: 55-5390-4312                   |
| Rane NSK Steering Systems Ltd.                      |                     | Germany:                            |                                        | United States of America:                   |                                     |
| Chennai                                             | tel: 044-274-66002  | NSK Deutschland GmbH                |                                        | NSK Corporation                             | www.us.nsk.com                      |
|                                                     | 101. 044-274-00002  | Düsseldorf                          | tel: 02102-481-0                       | Ann Arbor                                   | tel: 734-913-7500                   |
| NSK Ltd. India Blanch Office                        | tal: 044 0446 6860  | NSK Precision Europe GmbH           |                                        | NSK American Technology Center              |                                     |
| Chennai                                             | tel: 044-2446-6862  | Düsseldorf                          | tel: 02102-481-0                       | Ann Arbor                                   | tel: 734-913-7500                   |
| Gurgaon                                             | tel: 124-4104530    | NSK Steering Systems Europe Ltd.    |                                        | NSK Precision America, Inc.                 | www.npa.nsk.com                     |
| Indonesia:                                          |                     | Stuttgart                           | tel: 0771-79082-277                    | Franklin                                    | tel: 317-738-5000                   |
| PT. NSK Bearings Manufacturing Inc                  |                     | Neuweg Fertigung GmbH               | 101. 077 1-7 0002-277                  | NSK Steering Systems America, Inc.          | www.nssa.nsk.com                    |
| Jakarta                                             | tel: 021-898-0155   | Munderkingen                        | tel: 07393-540                         | Bennington, Vermont                         | tel: 802-442-5448                   |
|                                                     |                     |                                     |                                        |                                             |                                     |
| PT. NSK Indonesia                                   |                     | Italy:                              | 101. 07 000 040                        | NSK Lătin Ámerica, Inc.<br>Miami            | www.la.nsk.com<br>tel: 305-477-0605 |

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

For more information about NSK products, please contact:-



Printed on 100% recycled paper.

CAT. No. E4201b 2007 C-7 Printed in Japan ©NSK Ltd. 2001